
Cooperative Network of Mobile Agents to Remotely Process
User Information Requests

Roberto Yus and Eduardo Mena
University of Zaragoza

Maria de Luna 1, 50018 Zaragoza, Spain
Email: {ryus,emena}@unizar.es

Abstract—In this paper we introduce a network of static
and mobile agents which collaborate to process information
requests by mobile users. The agents help users to define
their information needs, process their requests by deploying
themselves on devices near the information requested, and
obtain results from users and their mobile devices, in a
continuous way.

Keywords-Software and Pervasive Agents, Information Ex-
changes in Multi-Agent Systems

I. INTRODUCTION

We live in a world of connected devices (e.g., smartphones
and tablets) equipped with multiple sensors able to measure
temperature and location, or take pictures and videos, among
others. Users might be interested in accessing information
that can be provided by these network of devices. In this
scenario, the traditional vision of agents that collaborate
among themselves to obtain information for their users is
very compelling. However, there is a lack of collaboration
among these mobile devices that would be beneficial to ob-
tain interesting information for users. Furthermore, software
agents might not be enough for some tasks and in some
situations might even need to collaborate with humans to
achieve their goals (e.g., an agent could activate the camera
of a smartphone to take a picture but it still needs the human
to point the camera to a monument).

In this paper we present the network of agents designed
for the SHERLOCK system [2], our approach to pro-
vide mobile users with interesting Location-Based Services
(LBSs), which executes on mobile devices and leverages
their communication mechanisms to exchange information
among them in an ad hoc manner. The (static and mobile)
agents process the information request, and deploy them-
selves through the (wired/wireless) network until reaching
the most appropriate location to retrieve the data needed,
send them back through the agent network, and answer the
user in a continuous way. This approach assume that the
highly-dynamic network infrastructure is unknown a priori,
therefore mobile agents adapt themselves to such continuous
changes, bringing the computation wherever needed and
creating new agents when necessary to achieve their goals.

II. REQUEST PROCESSING USING AGENTS

A. Helping Users Defining their Requests

In SHERLOCK, the User Request Manager (URM) agent,
residing on the user device, helps the user to specify her
information needs and so to find and select the (location)
service that she needs, by using a local ontology and a
dynamically generated GUI. The result of this process (out
of the scope of this work, see [2] for more details) is that the
URM generates a formal query expressed in GeoSPARQL-
DL (SPARQL extended with location and Description Log-
ics constraints); see an example in Figure 1, for a user
request of pictures of the July 4th celebration at Washington
D.C. (specifically, pictures of the header of the parade and
pictures showing the fireworks and the Lincoln Memorial).
The URM, after consulting the ontology, specifies for each
request whether other users should be considered or not as
information sources, depending on the quality of answer
(number of results, number of requirements not fulfilled
including the required age of data) obtained from regular
sources. For example, for our sample query, humans could
be asked in case of obtaining less than 10 photos.

SELECT ?photo, ?timestamp
WHERE {

Type(?photo, sherlock:Photo),
PropertyValue(?photo, sherlock:target, ?parade),
Type(?parade, sherlock:ParadeHeader),
FILTER(geof:within(?photo,

geof:buffer(?parade, 200, ’m’))),
...

} OR WHERE {
Type(?photo, sherlock:Photo),
PropertyValue(?photo, sherlock:target,

sherlock:Fireworks),
PropertyValue(?photo, sherlock:target,

dbpedia:Lincoln_Memorial)
FILTER(geof:within(?photo,

geof:buffer(38.8885, -77.0523, 200, ’m’))),
...

}

Figure 1. Excerpt of an SPARQL-like sample query.

Afterward, the URM agent creates a User Request Pro-
cessor (URP) agent, which will process the user request,
and provides it with the formal query to be processed. URP
firstly tries to obtain an answer locally by executing the
query on the local ontology on the device. If the local infor-



mation is not enough according to query requirements, then
a network of mobile agents is deployed to get information
from other devices (see Figure 2). For this task we reuse
and improved the approach presented in [1].

Creation
Communication

MobilekAgent

StatickAgent

Wireless/wiredk
device

Ontology

RelevantkArea

URP

Updater

Updater

Updater

Tracker

Tracker

UserkDevice

Alfred

Local
Ont.

User

URM

Alfred

HIM

Figure 2. SHERLOCK’s agent network.

B. Agent Network Deployment

Creating Trackers: The URP agent analyzes the query
constraints to determine the number of agents to create: Each
location constraint has associated 1) a geographic reference
(a static point or a moving object in the scenario), 2) a
geographic area related to that reference, and 3) the kind
of target objects that must fulfill being inside that area.
The URP agent creates a Tracker agent for each location
constraint, to retrieve target objects inside their geographic
areas. For the sample query in Figure 1, two Trackers are
created, one will follow the header of the parade (the first
location constraint reference), and the other will try to find
a device around the centroid of the specified area near the
fireworks (the second location constraint reference). Each
Tracker agent will try to scan its associated geographic area
but in parallel, due to its mobile nature, it will jump from
moving device to moving device to keep itself as close as
possible (physically) to the reference of such a geographic
area, even staying on the reference object itself. In the
running example, the first Tracker agent will try to move to a
device of a member of the parade header to “automatically”
follow the header (without moving to another device). This
way, as opposed to the approach in [1], SHERLOCK is
able to process requests in dynamic networks where the
infrastructure is unknown and change anytime.

Creating Updaters: To retrieve information concerning
its associated geographic area, each Tracker agent creates
a dynamic network of Updater agents, which will move
wherever needed to cover the whole geographic area associ-
ated to its Tracker agent, and obtain answers concerning
its (partial) queries. Thus, each Updater will keep itself
on the most appropriate device to provide its Tracker with
the wanted information. The Tracker correlates information
received from Updaters, analyzing communication delays of

each one, in order to increase of decrease the number of
Updaters to fit to the network status continuously.

Retrieving relevant information: Each Updater agent re-
siding on a remote device executes the (sub)query assigned
against the ontology in the SHERLOCK-enabled devices
in current communication range with its host. As we said
before, under certain circumstances the system can consider
humans as information providers and they can be requested
to obtain information needed by other users. In that case,
first, the Updater agent sends a petition to the static agent in
charge of the interaction with the user, Alfred, including a
deadline attached (the maximum amount of time the Updater
is willing to wait for a reply). Then Alfred checks the
context of the user (which might show that she is busy) and
her preferences regarding requests from others, whenever
possible, Alfred will ask the user and communicate the
Updater if she accepts; in that case, the Updater will send a
Human Interaction Manager (HIM) mobile agent to the user
device in order to manage such a request and then return the
result to its corresponding Updater. In our running example
the HIM agent will open the camera application and ask to
the most appropriate user to move to the steps that lead up to
the Lincoln Memorial and take a picture with the fireworks
on the background.

C. Continuous Query Processing
Once Updaters obtain the information from devices

around, they send it to their corresponding Trackers. Track-
ers correlate the information received, considering the most
recent data when multiple Updaters retrieve related infor-
mation, and return it to the URP agent, which performs a
correlation of the information obtained from the different
Trackers (e.g., in our running example to join the pictures
obtained of the parade and the fireworks). The user might
want to obtain a continuous flow of information (e.g., as long
as the fireworks and the parade are taking place). Therefore,
the URP maintains the network of agents as long as the user
maintains the request active. In fact, concerning synchroniza-
tion among all the agents, when the required refreshment
rate falls below the requirements of the query, each Tracker
can create new Updaters to balance the monitoring tasks.
Also the URP could even create more than one Tracker for
location constraints specially complex to process (e.g., with
a single but huge associated geographic area).

Acknowledgments. Research work supported by the CICYT
project TIN2013-46238-C4-4-R and DGA-FSE.

REFERENCES

[1] S. Ilarri, E. Mena, and A. Illarramendi. Location-dependent
queries in mobile contexts: Distributed processing using mobile
agents. IEEE Trans. on Mobile Comp., 5(8):1029–1043, 2006.

[2] R. Yus, E. Mena, S. Ilarri, and A. Illarramendi. SHERLOCK:
Semantic management of location-based services in wireless
environments. Pervasive and Mobile Comp., 15:87–99, 2014.


