
MultiCAMBA: A System for Selecting Camera Views in
Live Broadcasting of Sport Events Using a Dynamic 3D

Model

Roberto Yusa, Eduardo Menaa, Sergio Ilarria, Arantza Illarramendib, Jorge
Bernada

aUniversity of Zaragoza, Mar��a de Luna 1, Zaragoza, Spain
bBasque Country University, Manuel de Lardiz�abal s/n, San Sebasti�an, Spain

Abstract

For a Technical Director (TD) in charge of a live broadcasting, selecting the
best camera shots among the available video sources is a challenging task,
even more now that the number of cameras (some of them mobile,or attached
to moving objects) in the broadcasting of sport events is increasing. So, the
TD needs to manage a great amount of continuously changing information
to quickly select the camera whose view should be broadcasted. Besides, the
better the decisions made by the TD, the more interesting thecontent for the
audience. Therefore, the development of systems that couldhelp the TD with
the selection of camera views is demanded by broadcasting organizations.

In this paper, we present the system MultiCAMBA that helps TDsin the
live broadcasting task by allowing them to indicate in run-time their interest
in certain kind of shots, and the system will show the camerasthat are able to
provide them. To achieve this task, the system manages location-dependent
queries generated according to the interests of the TD. Moreover, to avoid
the use of costly on line real-image processing techniques over the camera
views, such real camera views are recreated in a 3D engine by using the
information contained in a 3D model of the scenario. This model is updated
continuously with real-time data retrieved from the real objects and cameras
in the scenario. In this way, the system extracts high-levelsemantic features

Email addresses:ryus@unizar.es (Roberto Yus), emena@unizar.es(Eduardo
Mena), silarri@unizar.es (Sergio Ilarri), a.illarramendi@ehu.es (Arantza
Illarramendi), jbernad@unizar.es (Jorge Bernad)

Preprint submitted to Multimed Tools Appl March 13, 2014

of 2D projections of the 3D reconstruction of the camera views. We present
a prototype of the system and experimental results that showthe feasibility
of our proposal.

Keywords: Content selection in run-time, mobile multi-camera
management, location-aware systems

1. Introduction

There exist many scenarios where it is important to select among many
cameras the one whose view is the most interesting. For example, in the live
broadcasting of sport events, a Technical Director (TD) hasto make quick
decisions to select the camera video stream to broadcast. Furthermore, nowa-
days broadcasting organizations are increasing the numberof cameras cover-
ing sport events (e.g.,Sky TV uses 24 cameras in Premier League matches).
The higher the number of cameras available, the richer the content that can
be obtained, and therefore more complicated is for the TD to select the best
one. Therefore, it would be interesting to develop systems that could help
the TD to select the most interesting camera view among many sources.

For example, consider the TD in charge of the live broadcasting of a
rowing race (this is a very popular sport along the north of Spain). From
the broadcasting perspective, the technology and equipment involved in the
event nowadays include multiple cameras (in sailing boats,in a helicopter,
in the harbor, in a nearby island, etc.) and a GPS receiver on every boat.
In this context, it would be very helpful to have a system where the TD
could de�ne his/her interest on a certain view (e.g.,a view of the front of
two rowing boats) and obtain the list of cameras that could provide it.

A relevant feature of such a system would be to support the possibility of
analyzing camera views in real-time to extract enough information to �nd out
what they are showing. For this task, a popular approach is toprocess the
real images provided by the cameras. However, using real image processing
techniques to extracthigh-level featuresrelated to the semantics of the scene,
such as the kind of objects or the speci�c identity of the object, is a challenge
(and even more in real-time). This is related to the problem of the well
known \semantic gap" that exists between low-level features and high-level
semantics, which has attracted considerable research attention (e.g., see [1]
and [2]). For example, consider the camera shot in Fig. 1(a),where all the
rowing boats are shown from a large distance to allow the viewer to have a

2

general overview of the race. Real image processing techniques would face
two main problems:

(a) (b)

Figure 1: Real camera footage (a) and interesting and other objects in the scene (b).

1. Along with the rowing boats there exist multiple moving objects (jud-
ges, support team, etc.) very close to them (in Fig. 1(b) we have
highlighted the rowing boats and the other moving objects with red
dotted and yellow circles, respectively). So, it will be di�cult to dis-
tinguish the objects-of-interest(rowing boats) from the other objects
in the scenario based on their visual features and moving patterns.

2. Even if the objects that are rowing boats could be identi�ed, the TD
could be interested in a speci�c boat (e.g., \Kaiku" in Fig. 1(b), high-
lighted with an arrow). Identifying this boat automatically among the
others will be very di�cult.

In this paper, to overcome these di�culties, we present the system Mul-
tiCAMBA (Multi-CAMera Broadcasting Assistant) that uses a di�erent ap-
proach. Instead of on line analyzing the real images provided by the cameras,
such real camera views are recreated in a 3D engine by using the information
contained in a 3D model of the scenario. The system manages and keeps this
3D model up-to-date in real-time according to the information of objects-
of-interest (identi�cation, location, direction, approximate extent, etc.) and
cameras (location, direction, Field of View {FOV{, etc.) in the scenario.
In this way, the system obtains projections of the 3D reconstruction of a
camera view to extract high-level semantic features of the real camera view.
So, the proposed system is able to automatically and accurately detect the
speci�c objects that are viewed by a camera (e.g., \the Kaikurowing boat"
vs. simply \a boat"). Moreover, the system obtains other high-level features

3

of each object detected in a camera view, such as: their amount visible in the
camera view (as a percentage), the viewpoint of the camera concerning each
object (e.g., it could view the front and top of the object), the amount of the
shot occupied by them (that determines the space available for uninteresting
objects), etc. We present in this paper the e�cient methods that we have
developed to obtain this information continuously and in real-time (in our
tests, every second), which makes the system suitable for live broadcasting.

Due to the dynamic nature of sport event scenarios (objects and cameras
can move and camera views can change), the system must reevaluate con-
tinuously the location-dependent queries[3] posed by the user1 (e.g., obtain
cameras closer than 40 meters from a rowing boat). These queries are gener-
ated based on the requirements of the TD expressed through a user-friendly
Graphical User Interface (GUI). The TD can indicate in the GUI the speci�c
view he/she is interested in, and the results obtained by thesystem (the
cameras that could satisfy the requirements of the TD) will be presented in
a 3D reconstruction of the scenario.
In summary, the main contribution of our proposal is the development of a
system that:

� Enables the TD to indicate in run-time his/her interest in certain kinds
of shots through a user-friendly GUI, and the system selects (from the
available sources) the cameras that can provide such interesting shots.

� Processes in real-time the views provided by the cameras without the
need to analyze real images. For this purpose, it makes use ofa 3D
model updated continuously with real-time data from the scenario.

� Obtains high-level semantic features of the camera views e�ciently
enough for real-time processing, using a 3D engine and the up-to-date
information of the 3D model.

So, as long as the locations of the objects-of-interest and cameras (and
an approximation of the extent of the objects) can be obtained in real-time,
the system presented can be applied to any context, as no assumption is
made regarding the number of cameras in the scenario (the view of each one

1Notice that the Technical Director is the user of the system and we will use both terms
to refer to him/her.

4

can be analyzed separately), the kind of scenario (the system can be used in
scenarios involving moving objects, cameras, and queries about them), and
the positioning mechanism used to obtain the locations of the objects and
cameras. In some situations it could be challenging to obtain this information
for certain objects (e.g., it could be di�cult to obtain the r eal-time precise
location of a ball or the extent of soccer players that move their limbs while
running). However, our approach does not rely on a speci�c technology to
obtain this information nor requires 100% precision of these data to e�ectively
distinguish between cameras that are interesting or not fora given query.

The rest of this paper is structured as follows. We review some related
works in Section 2. Then, we present the architecture of the system in
Section 3. We describe the approach proposed to analyze the views of the
cameras using the 3D model of the scenario in Section 4. We explain the
GUI proposed for the TD in Section 5; the GUI allows the TD to easily
de�ne his/her queries and displays the results obtained. Wethen present
some experiments performed to validate our proposal in Section 6. Finally,
conclusions and future work are included in Section 7.

2. Related Work

Up to the authors' knowledge, no other work has focused on the real-time
selection of camera views based on the extraction of high-level features of im-
ages provided by multiple moving cameras using a 3D model of the scenario.
However, there is extensive research on the analysis of real images to obtain
what a camera is viewing. These studies can be classi�ed according to the
kind of processing performed on the video streams (on-line or o�ine). Pro-
posals to process the videos on-line usually take into account the cinematic
features of the views provided by the cameras, such as the shot types (e.g.,
a long shot, a close-up shot, etc.). Considering high-levelfeatures related to
the semantics of the scene, such as the speci�c object, the visible amount
of the object, or object-basedfeatures, such as the color and shape of the
objects, their interactions, etc., may be computationallytoo costly for on-
line processing, even though it would provide richer semantic details. Works
to analyze videos o�ine, and so having more time for the processing, use
object-based features to extract events of interest (e.g.,a pitching scene in a
baseball video) and usually consider only static cameras.

5

2.1. Real-Time Camera Selection for Sport Events
We can mention [4, 5], that share the goal of our proposal of selecting

camera views in real-time for TV broadcasting, even though their approaches
are based on analyzing the real images provided by the cameras.

The context of the system presented in [4] is soccer games. Itrelies on the
well-de�ned structure of a soccer broadcast to alternate the selection between
cameras that provide a far view and cameras that provide a medium/close-up
view. The view switching method proposed in that paper does not analyze
high-level features of the camera views and the authors assume that all the
cameras are following the game action (and hence they have a similar con-
tent). So, their problem is to select those cameras providing a clear view
(they discard blurry images). The main di�erences between our work and [4]
is that we allow the TD to de�ne the criteria to be considered to select a
camera view, and moreover our proposal is able to obtain a good number of
high-level features of a camera view in live. Besides, we make no assumptions
about the current views of the cameras.

In [5] a system is also presented to automatically select in live the camera
to broadcast in a soccer game. As we do, the authors also consider low-
cost cameras as a way to reduce the costs of a sport broadcasting. They
assume that there exist four cameras located along the �eld and they process
their views to obtain the size of the ball in each one. With this information,
they propose to select the camera whose view shows the largest area of the
projected ball. Therefore, their approach is focused on ball sports and under
the assumption that the best views are those that provide a better view of
the ball, while ours can be applied to other contexts where selecting among
many camera views is needed.

The goal of these two works is to select automatically the best camera to
broadcast in soccer events based on parameters as image quality. However,
our approach, that is not focused in any speci�c sport, enables the TD to
de�ne the kind of camera he/she wants to broadcast based on the objects
that this camera views.

2.2. Assistants for Sport Videos Summarization
A number of works have focused their e�orts on the speci�c problem

of helping producers of sport videos. For example, as part ofthe APIDIS
project, in [6] a system that helps the video production and video summa-
rization in the context of basketball games is presented. The work presented
in [7] tackles the problem of summarizing videos of soccer games by applying

6

di�erent image processing algorithms to analyze the input videos extracting
cinematic and object-based features. In [8] the problem of video summariza-
tion, based on metadata describing the semantic content of MPEG-7 videos,
is considered in the context of baseball games. Cricket videos, as well as
soccer videos, are used to validate the work in [9], which exploits audio fea-
tures (such as an increase in the audio level of the voice of the commentators
or the cheers of the audience) to extract excitement clips from sport videos.
Along the same line, the work in [10] bene�ts from audio and motion cues
to extract highlights from baseball videos. Textual overlays appearing in
images are exploited in [11] to create personalized summaries of American
football videos (i.e., video abstracts that take into account the user prefer-
ences); similarly, works such as [12, 13] use webcast text associated to the
video for event detection. In [14] the authors focus on the problem of rank-
ing, structuring, and summarizing highlights to match a user's personalized
query, within the context of racket games (tennis and badminton). Like [14],
most works in this area emphasize the importance of taking into account the
user preferences and/or expectations [15]. A detailed survey of soccer video
analysis systems can be found at [16].

All these works are concerned about facilitating the production of sport
events, like the proposal in this paper, but they have a di�erent purpose.
Thus, the purpose of these works is usually to perform an automatic video
production in an o�ine setting (so, for example, achieving agood perfor-
mance for real-time processing is not an issue) by using realimage process-
ing techniques to extract low-level features (e.g., color,texture, shapes, etc.)
that will be processed to obtain cinematic features (i.e., shot classi�cation).

2.3. Camera Management for Broadcasting
Several works in the literature have considered the problemof automatic

camera management for recording and broadcasting lecturesand talks. For
example, inAutoAuditorium [17] two cameras and microphones are used to
obtain information about what is happening on the stage and perform an
automatic audio mixing, tracking of the people on stage, andcamera selec-
tion. Another interesting work is [18], which implements several production
rules, inspired by the way professional video producers work, in order to take
the appropriate recording decisions. The systemFlySPEC [19] combines a
PTZ (Pan-Tilt-Zoom) camera and a panoramic camera and bene�ts from
the involvement of the audience, participating through explicit requests, to
reduce the probability of unsatisfactory recordings. TheMicrosoft Research

7

LecCasting System(MSRLCS) [20] supports a scripting language to facilitate
the customization of production rules for di�erent room con�gurations and
production styles. As a �nal example, theVirtual Videography [21] advocates
an o�ine processing to have more time and information to perform the video
production.

Although the context and purpose of these works is di�erent from the
ones considered in this paper, they highlight the interest of the development
of automatic video production techniques to save production costs and en-
able fast access to multimedia information. Several other works focus on
multi-camera management (e.g., [22, 23]). However, they usually consider
only cameras that are static (i.e., at �xed locations), whereas the cameras
considered in our proposal can move.

3. Overview of the System

In this section we provide an overview of the steps followed by the sys-
tem to accomplish the goal of obtaining the camera views thatful�ll the
requirements of the TD (see Fig. 2):

3D Engine

Obtaining the user requirements

Presentation of the results to the user

Cancel?
NO

YES

END
3D Model

Generation of the formal query

Technical
Director

Cameras and objects in the scenario

Figure 2: Main steps followed by the system.

1. 3D model management(see Section 3.1). The 3D model of the scenario
is an essential part of our system as it stores the information about the
di�erent objects and cameras in the scenario. The system maintains
this 3D model updated in parallel to the processing of user queries.

8

2. Obtaining the user requirements. The requirements of the user are
captured through an easy-to-use interface (see Section 5).The system
provides two mechanisms for that: a) the TD selects from lists the
target object/s that must be part of the view and the constraints that
the camera view must ful�ll, or b) the TD clicks on prede�ned queries.
Complementary, the ideas presented in [24] can be applied toenable
the TD to de�ne his/her requirements through an interface for the
de�nition of 3D scenes. In addition, touchable 3D interfaces [25] could
be helpful to improve the immersion of the TD in this process,although
this is out of the scope of this paper.

3. Generation of the formal query(Section 3.2). By analyzing the infor-
mation provided by the user, the system generates a location-dependent
query capturing his/her requirements.

4. Execution of the query(Section 4). The system obtains high-level fea-
tures of the camera views (objects viewed, amount of them covered,
kind of view, etc.) and the cameras are �ltered to obtain those whose
view ful�lls the user requirements. Then, the answer set is ranked
according to the user preferences.

5. Presentation of the results to the user. The results obtained by the
system are presented to the user in the GUI, both in a tabular form
and in a 3D reconstruction of the scenario (see Section 5).

In the following sections we explain with more details thesesteps.

3.1. 3D Model Management

Obtaining the cameras that are able to provide the TD with therequired
view is possible thanks to the use of an up-to-date 3D model. The system
e�ciently keeps the 3D model updated with the information of the objects
and cameras in the scenario (obtained from di�erent sensors). This is not an
overload for the system (as it only involves obtaining the interesting infor-
mation and storing it) and it can even be performed in anothercomputer.
The 3D model stores the following information about the objects involved in
the scenario: identi�cation, location and direction, extent, and front and top
vectors (see Fig. 3).

The location and direction of an object, that can be provided, for example,
by a GPS and a compass (as in the scenario we have tested in Section 6), have
to be continuously updated to obtain accurate results, as they are highly-
dynamic data. The imprecision of the localization mechanism could lead

9

Figure 3: An object-of-interest modeled in our system.

to imprecise answers (e.g., in [26] the authors report an accuracy of around
1 meter for some GPS receivers), but our approach is independent of the spe-
ci�c location mechanism used. So, it is possible to combine,if needed, several
positioning mechanisms to increase the accuracy, even for indoor events (by
using overhead cameras, sensors, Wi-Fi signal strength maps, etc.).

We want to extract some high-level features, interesting for TDs, of ob-
jects inside the FOV of a camera, such as the percentage of them visible or
the viewpoint obtained. Therefore, we need to represent these objects in the
3D space using the approximate volume (extent) of space thatthese objects
occupy. However, our system does not need a precise 3D mesh of these ob-
ject to accomplish its main goal of discarding non-interesting cameras (as
we show in our tests in Section 6, where we used an approximateextent for
the di�erent types of objects-of-interest). Of course, themore precise the
extent of an object-of-interest provided to the system, themore accurate the
information it will obtain regarding the percentage of the object viewed by
a camera. Thus, users could generate a simple 3D model for these objects
or even search for similar already-generated meshes in 3D model databases
(e.g., by using keywords or even real images, as studied in [27, 28]).

As the extent of objects-of-interest could change dynamically during the
event it could be interesting to provide the system with thisinformation.
However, in real life only small parts of these extents change(e.g., the rows of
a rowing boat, the limbs of a soccer player, etc.). Thus, the general accuracy
of our system will not be a�ected signi�cantly if non-deformable extents for
objects-of-interest are used (in our tests we used �xed 3D models).

10

Besides, the front and top vectors must be de�ned for this extent in order
to allow the system to distinguish between the di�erent kinds of views of
an object (top/bottom, front/rear, left/right, or any comb ination of two or
three elements chosen from the three previous pairs). In this way, the system
can answer queries retrieving, for example, cameras recording a top view of
an object. In our system, 90-degree angles are considered between the front
and top vectors, the sides and the front, and the sides and thetop. Thus,
no more than three viewpoints are going to be usually selected at the same
time in a query for the same object.

Concerning the cameras, which play a key role in the system, we consider
that they can rotate (both vertically and horizontally) and change their loca-
tion (if they are attached to moving objects). We model a camera c as shown
in Fig. 4. In the �gure, we identify several elements:� h and � v are the hor-
izontal and vertical angle of view (that de�ne theField of View {FOV{ of
the camera), respectively;� , � max , � min , and � speed are the current pan, the
maximum pan possible, the minimum pan possible, and the pan speed (de-
grees/second) of such a camera, respectively; �nally,� , � max , � min , and � speed

are the current tilt, the maximum tilt possible, the minimum tilt possible,
and the tilt speed (degrees/second), respectively2. Angles that represent a
pan to the right (�) or a tilt upwards (�) from the corresponding vector are
considered positive and those that represent a pan to the left (�) or a tilt
downwards (�) are considered negative. Besides, each camera has a unique
identi�er.

3.2. Generation of the Formal Query

The system generates queries using the requirements de�nedby the TD.
These queries are expressed using an SQL-like syntax with the following
structure:

SELECT projections
FROM sets-of-objects

WHERE boolean-conditions
[ORDER BY sorting-criteria]

where projections is the list of attributes the TD is interested in, sets-of-
objectsis a list of the kinds of objects (e.g., rowing boats, helicopters, etc.)

2In this work we do not deal with the possibility of zooming.

11

�

� max

� min

�
0

angle bisector
of � hc

(a)

� max

� min

0

� v

� angle bisector
of � v

c

(b)

Figure 4: Modeling a camera: pan (horizontal plane) (a), andtilt (vertical plane) (b).

interesting for the query, boolean-conditionsis a boolean expression (com-
posed by location-dependent constraints [3] and other constraints) that must
be true for the objects retrieved by the query, andsorting-criteria is the
ordering criteria that will be used for the presentation of the results. The
ORDER BY clause is optional, as in standard SQL. However, the sorting
criteria can be particularly interesting when dealing withqueries that re-
trieve cameras, as several cameras may satisfy the query constraints and
some criteria is needed to show the most promising results �rst.

To extend the previous SQL-like syntax in order to support all the features
of our proposal, we de�ne the following functions:

� checkKindOfView(target, cam,< views>) returns a vector containing a
true value for each kind of view in the vector< views> that the camera
cam is obtaining of the target object target. Another variant of this
function is checkKindOfView(target, cam,< views> , t) , that performs
the same operation but taking into account the estimated view that
the camera will obtain after t seconds.

� percentageShot(target, view, cam)returns the percentage of the shot of
the cameracamoccupied by the target objecttarget; percentageShot(target,
view, cam, t) performs the same operation for the estimated view that
the camera will obtain after t seconds. Notice that if the user selects
a speci�c viewpoint for the view parameter, which is indeed optional,
these functions will obtain the amount of the shot occupied by the
viewpoint of the target object.

12

� percentageObject(target, view, cam)returns the percentage of the target
object target that the camera cam is viewing; percentageObject(target,
view, cam, t), performs the same operation for the estimated view that
the camera will obtain after t seconds. If the user selects a speci�c
viewpoint for the view parameter, which is optional, these functions
will obtain the percentage of the viewpoint covered.

� preferenceDegree(target, cam,�) returns a numeric value that allows
the system to rank cameras that ful�ll the user requirementsaccording
to how well their views �t his/her preferences. The user sets� , which
represents the importance of the percentage of the shot occupied by
the target with respect to the percentage of the object viewed (which
will have a weight of 1� �). In our prototype we advocate computing
the preference degree as follows, in order to represent thatthe higher
the percentage the better, but any other function could be used:

percentageof shot occupied� � + percentageof target viewed� (1� �)

� rotationToView(target, cam) returns a vector with the pan and tilt
angles that the cameracam has to turn to view the target object
target. This function makes use ofpanToView(target, cam) and tilt-
ToView(target, cam), that obtain the pan and tilt needed to view the
target, respectively.

� timeToView(cam, < pan, tilt>) returns the time needed by a camera to
turn horizontally pan degrees and verticallytilt degrees. This function
makes use oftimeToPan(cam, pan) and timeToTilt(cam, tilt) , that
obtain the time needed to pan and tilt a certain angle, respectively.

� distance(target, cam)returns the distance between a cameracam and
a target object target.

To show the use of this SQL-like syntax (a preliminary version can be
found at [29]), we �rst consider an example where the TD asks the system
about cameras that view right now at least 30% of the \Kaiku" boat that �lls
at least 10% of the shot. The request will be translated to the following query
(we assume that for the TD the percentage viewed is more important than
the percentage of the shot occupied and considers� = 0.4):

13

SELECT O.cam.id, score
FROM Objects AS O

WHERE < pan,tilt > =rotationToView(Kaiku, O.cam)
AND pan=0 AND tilt=0
AND percentageObject(Kaiku, 'any', O.cam)� 0.3
AND percentageShot(Kaiku, 'any', O.cam)� 0.1
AND score=preferenceDegree(Kaiku, O.cam, 0.4)

ORDER BY score DESC

As the TD wants to obtain the cameras viewing the target objectright
now, the query includes a condition (pan=0 and tilt=0) that ensures that the
cameras in the answer set ful�ll this constraint. Besides, the function pref-
erenceDegreeis used to take into account the TD preferences in the ranking.
It is interesting to highlight that the system evaluates thefunctions percent-
ageObject, percentageShotand preferenceDegreeat the same time, using a
single rendering of the view and with a single pass (see Section 4.1).

Now, considering that the TD asks aboutcameras that can view the front,
top and side of \Kaiku" in less than 20 seconds, sorted by the percentage of
the target viewed and the time needed to view it(the largest the percentage
and the shorter the time, the more appropriate a camera is), the system
generates the following query:

SELECT O.cam.id, pct, time, pan, tilt
FROM Objects AS O

WHERE < pan,tilt > =rotationToView(Kaiku, O.cam)
AND time=timeToView(O.cam, < pan,tilt >)
AND time < 20
AND views=checkKindOfView(Kaiku, O.cam,

< front, top, side> , time)
AND views=< true, true, true>
AND pct=percentageObject(Kaiku, 'any', O.cam, time)

ORDER BY pct DESC, time

Notice that checkKindOfViewchecks, with a single rendering, the kind of
view that the TD has requested (i.e., viewing the front, top and side of the
target). Besides, the functionpercentageObjectobtains the percentage of the
target that the camera will cover once it views the target (intime seconds).

14

4. Execution of the Query

Our proposal handles the processing oflocation-dependent queries, which
are queries whose answer depends on the locations of the objects involved [3]
(e.g., obtain the cameras closer than 25 meters from the Kaiku rowing boat).
These queries are usually considered ascontinuous queries[30], whose an-
swer must be continuously refreshed (in our tests, every second) due to the
movements of the objects. In the scenarios we consider, not only the objects-
of-interest can change their location but also the cameras (as they can be
attached to moving objects). Moreover, the cameras can usually be rotated
(pan and tilt); therefore, cameras that are not ful�lling currently the require-
ments of the TD could satisfy them in a near future, due to their combined
change of location, pan, and tilt. In addition, the system isable to process
multiple request at the same time; so, the TD can de�ne a new query while
the system is (continuously) executing others.

The most important task when executing a query is to analyze the views
of the cameras (see Section 4.1). The goal of this analysis isto obtain high-
level features of the camera view to check if it ful�lls the TDrequirements.
The following high-level features are extracted by the system from a camera
view:

� The speci�c objects viewed (e.g., in Fig. 5(a),CAM1 views the rowing
boats \Kaiku" {in green{ and \Urdaibai" {in red{) and some inf orma-
tion about them:

{ The distance to the object (e.g, in Fig. 5(a), the distance between
CAM1 and the boat \Urdaibai" is 17 meters).

{ The percentage of the object covered (e.g., in Fig. 5(b),CAM2
views 22% of the boat \Kaiku").

{ The percentage of the shot occupied by the object (e.g., in Fig. 5(b),
\Kaiku" �lls 26% of CAM2 view).

{ The kind of view obtained of the object (e.g., in Fig. 5(b),CAM2
views the front and left side of \Kaiku").

{ The percentage of the viewpoint of the object covered (e.g.,in
Fig. 5(b), CAM2 views 47% of the front and 29% of the left side
of \Kaiku").

15

� The percentage of the shot occupied by objects-of-interest(e.g., in
Fig. 5(a), both rowing boats �ll 6% of the view provided byCAM1).

(a) (b)

(c) (d)

Figure 5: Sample views, recreated using Google Earth, of three cameras (CAM1 (a),
CAM2 (b), CAM3 (c), and CAM3 after 4 seconds panning to the right (d)) covering a
rowing race.

If a certain camera is not currently viewing a target object,the system can
obtain the rotation (pan, tilt, or both) and the time needed for the camera
to view it (see Section 4.2). For this purpose, the system needs to take
into account the current location, speed, and direction of the target object
and other objects in the scenario (because they could partially or fully hide
the target), and the features of the camera being considered(maximum pan

16

and tilt allowed, and rotation speeds). Once the system estimates the time
needed for a certain camera to view a target object, it will recreate the state
of the scenario and obtain high-level features of the view that the camera
would provide at that moment.

To illustrate the need of this time estimation and the rotations that should
be performed to obtain a requested view, we present an example. Let us
suppose that the TD is interested in:cameras that can view the front, top,
and side of a certain object, at most in 20 seconds, sorted by the percentage
of the target viewed and the time needed to view it. Using the location, speed,
and direction of the objects and cameras in the scenario, thesystem estimates
that CAM3 (that is not currently viewing the target, see Fig. 5(c)) will need
to pan 35 degrees (to the right) during 4 seconds to view the \Kaiku" boat.
The view that it would obtain at that moment will cover the front, top, and
side of \Kaiku" (see Fig. 5(d)), and so this camera ful�lls the requirements
of the TD. Notice, that CAM1 also ful�lls the requirements (see Fig. 5(a))
but CAM2 does not view the top of \Kaiku" (see Fig. 5(b)).

The time and rotations estimated for a camera to ful�ll the view required
by the TD are high-level features obtained by the system. As inthe case
of the other high-level features, the time and rotations canbe used as con-
straints in the user query and as ranking criteria when presenting the answer
to the query.

4.1. Processing of the Camera Views

In this section, we explain how the system analyzes a camera view to ob-
tain high-level features. First, we show how the viewpoint of the target that
the camera is capturing is obtained. Then, we describe how the percentage
of the target object viewed by a camera is computed taking occlusions into
account. Finally, we explain a combination of the two previous processes
that allows obtaining the percentage of a speci�c viewpointof an object that
a camera is providing. These are extended explanations of the 3D operations
that we brie
y introduced in [31].

4.1.1. Kind of View Obtained of the Target Object
Being able to classify the video streams of the cameras according to the

kind of view obtained enables the system to answer speci�c requests of the TD
(e.g.,cameras viewing the front, top and right side of a certain object). As the
extent of the objects in the scene could be complex and we needto perform
the calculations automatically and quickly (the 3D model ofthe scenario is

17

updated in our tests every second), we propose the use of light sources and
illumination to calculate the kind of view that a camera is providing of an
object (see Algorithm 1).

Algorithm 1 Calculate the kind of view obtained of a target object
Input: target, cam, <views>
Output: <visible views>

1: scene=recreate cam's view in the 3D engine
2: remove all the illumination sources ofscene
3: for each object in the scenedo
4: if object == target then
5: paint object with re
ective texture
6: else
7: paint object in black (background color)
8: end if
9: end for

10: for each view in <views> do
11: create light source inview's direction
12: set light source's color to an unused one from<red; blue; green>
13: end for
14: projection=obtain 2D projection of the scene
15: for each pixel in projection do
16: if pixel 's red, blue, or green channels6= 0 then
17: set true in <visible views> [i] if <views> [i] light source's color ==

pixel 's color
18: end if
19: end for
20: return <visible views>

The �rst step is to recreate the view of the camera in the 3D engine (we
used in our prototypeJMonkeyEngine3) by setting the virtual camera with
the same location, direction, and Field of View (FOV) than the real one.
Then, di�erent colors are assigned to the target and other objects in the
scenario so when the scene is illuminated only the parts of the target object
that are not occluded by other objects will be visible.Directional light sources

3http://jmonkeyengine.org/

18

(which have no position {only a direction{, are considered \in�nitely" far
away, and send out parallel beams of light) are used to illuminate the parts
of the object that belong to each requested view using di�erent colors for each
light source. In this way, the system checks several kinds ofviews with a single
pass and e�ciently decreases the number of renderings needed (obtaining a
rendering is one of the most time-consuming tasks). For example, to check
if the camera of Fig. 6(a) is viewing the top and rear of the boat, the system
\selects" these parts of the object by using a red and a blue light source,
respectively (see Fig. 6(b)). Finally, the systems checks the color of each
pixel of the 2D projection of the 3D scene and if its equal to one of the colors
used for the light sources that means that the camera is viewing, at least,
some part of the target object belonging to the kind of view considered.

(a) (b)

Figure 6: A real camera shot of a rowing boat (a) and the recreation of the view in our
system with the top (red) and rear (blue) of the boat highlighted (b).

4.1.2. Percentage Viewed of the Target Object
Our system supports queries that ask for cameras that view a certain

minimum percentage of an object. There exist two situationswhere a camera
could have an incomplete view of an object: 1) when the targetis partially
or fully occluded by another object, and 2) when the target does not �t the
FOV of the camera. Algorithm 2 calculates the percentage of a target object
that a camera is viewing taking occlusions into account.

As in Algorithm 1, the system assigns di�erent colors to the objects (red
for the target object and transparent green for the other objects in the sce-
nario), in order to show in the same rendering the hidden and visible parts of
the target (see Fig. 7(b)). Then, the current FOV is painted in transparent
blue to select what the camera is currently viewing (see Fig.7(c)). If the tar-
get does not �t completely the FOV, the virtual camera is movedbackwards

19

Algorithm 2 Calculate the percentage viewed of a target object
Input: target; cam
Output: percentage viewed

1: scene=recreate cam's view in the 3D engine
2: for each object in the scenedo
3: if object == target then
4: paint object in red
5: else
6: paint object in transparent green
7: end if
8: end for
9: paint current FOV in transparent blue

10: while target does not �t completely the FOV do
11: move virtual camera backwards
12: end while
13: projection=obtain 2D projection of the scene
14: for each pixel in projection do
15: if pixel 's red channel6= 0 then
16: increase #pixels of the target object
17: end if
18: if pixel 's red and blue channels6= 0 and green channel == 0 then
19: increase #pixels not occluded
20: end if
21: end for

22: return
pixels not occluded

pixels of the target object

20

until it views the target object completely. This movement allows the sys-
tem to obtain a rendering covering the full object while it does not a�ect the
perspective of the scene (see Fig. 7(d)). Finally, the system obtains the total
number of pixels of the target (#pixels of the target object) and the pixels
of the target visible and not occluded (#pixels not occluded) and computes

the percentage visible (
pixels not occluded

pixels of the target object
). For example, using

the image of Fig. 7(d), the system obtains that the camera views 41% of the
target object (the second boat).

(a) (b)

(c) (d)

Figure 7: Computing the percentage of a target object in a shot: scene in Google Earth
(a), selecting the target (b), painting the FOV (c), and covering the target completely (d).

21

4.1.3. Percentage of a Part of the Target Object
For the TD, it could be interesting also to retrieve cameras viewing a per-

centage of a certain part (i.e., top/bottom, front/rear, left/right) of an object
(e.g., cameras viewing at least 50% of the front of the object). The method
explained before needs an additional step to support this kind of queries
(see Algorithm 3), to obtain �rst which shot would cover 100% of that target
viewpoint in order to calculate the actual percentage viewed. In this way, the
system sets the virtual camera of the 3D engine in the direction of the target
viewpoint and at the same distance of the object than the realcamera, and
counts the number of illuminated pixels (#pixels belonging to viewpoint).
This information will be used along with the number of pixelsof the view-
point that the camera is viewing (#pixels viewed of viewpoint) to calculate

the percentage of the viewpoint viewed (
pixels viewed of viewpoint

pixels belonging to viewpoint
).

Notice that, if the target object did not �t the FOV in Algorithm 3, the sys-
tem moves the virtual camera backwards a distanced to compute the total
amount of pixels visible for a shot that covers 100% of the target view. In
this way, the system will move the camera backwards the same distance d
before calculating the amount of pixels of the view that the camera covers.
The example of Fig. 6(b) shows a 2D image rendered by the system for the
current view of a camera,where the system obtains that the camera views
95% of the top and 92% of the rear of the target object. Notice that there
are di�erent intensities of red and blue in the image used by the system,
as depending on the normal of the corresponding polygon the illumination
method (Phongis used in JMonkeyEngine) makes it look darker or brighter.
This is not a problem for our system because it only counts pixels that have
a nonzero value for that speci�c channel.

4.2. Estimating Future Views Considering Object Trajectories

It could be interesting for a TD to show information about cameras that
are not currently viewing a target object. For example, it could be useful to
estimate if a camera is going to be able to view the target if rotated (and the
rotation and time needed, if so). One can think that answering this question
is easy; for example, if a camera has the object to its right then it should be
able to view it if rotated to the right). However, calculating this estimation
is not so easy when considering that objects in the scenario,and so also the
cameras that are attached to them, can move. In the previous example, if the
object keeps moving around the camera with a speed higher than the rotation

22

Algorithm 3 Calculate the number of visible pixels of the object in a shot
that covers 100% of the target viewpoint of the object
Input: target; view; cam
Output: pixels belonging to viewpoint; d

1: recreatecam's view in the 3D engine
2: paint target with re
ective texture
3: set virtual camera's direction toview's direction
4: create light source inview's direction
5: if target does not �t completely the FOV then
6: d=move virtual camera backwards
7: end if
8: projection=obtain 2D projection of the scene
9: # pixels belonging to viewpoint=count pixels in projection

10: return # pixels belonging to viewpoint, d

speed of the camera, the camera will never view the target if rotated to the
right. Thus, in the following we present in detail our approach to estimate
the time and rotation needed by a camera to focus a target object considering
that both objects and cameras can move.

� 0

FOV

(vx ; vy)

(x0; y0)

(xc; yc)

(vcx; vcy)

Figure 8: Initial state of a target object in (x0; y0) and a camera in (xc; yc)

On the one hand, we have to model the movement of the objects (that
for simplicity can be represented here as points in the plane{their center

23

of mass{) with a motion function depending on timeS(t) = (x(t); y(t)) (see
Figure 4.2). For our scenario, we consider that the movementof the objects is
linear, but the method presented in this section would work with any analytic
functions x(t), y(t) (such as interpolation polynomials) or even with other
approaches to model the movement of objects (e.g., [32, 33]). So, the motion
function is:

S(t) = (x0 + vx t; y0 + vyt)

where (x0; y0) and (vx ; vy) are the initial position and the speed vector of the
object, respectively.

On the other hand, a camera is modeled as a semiline (de�ned bythe
bisector of its FOV) that can move and rotate (see Figure 4.2).The motion
function for a camera is the semiline formed by the values ofX and Y of
the line C(t) � (X � xc(t)) sin(� (t)) � (Y � yc(t)) cos(� (t)) = 0, such that
sign(X � xc(t)) = sign(sin(� (t)), sign(Y � yc(t)) = sign(cos(� (t)), where
(xc(t); yc(t)) is the translation motion function of the camera and� (t) is the
rotation function.

Again, we consider that a camera has a linear translation motion with
a uniform angular speed. Therefore, the motion equations ofthe semiline
representing a camera depending on time are:

(X � (xc + vxct)) sin(! ct + � 0) � (Y � (yc + vyt)) cos(! ct + � 0) = 0

sign(X � (xc + vxct)) = sign(sin(! ct + � 0)

sign(Y � (yc + vyct)) = sign(cos(! ct + � 0);

where (xc; yc) and (vxc; vyc) are the initial position and the speed vector of
the camera, respectively,! c is the pan speed of the camera, and� 0 is the
initial pan of the camera.

We want to obtain the minimum time instant when the camera focuses
the object, considering that the camera can rotate to the left side (a positive
pan speed) or to the right side (a negative pan speed). Thus, we have to
obtain:

� which pan speed (positive or negative) leads to a faster movement to
focus the object,

24

� for that pan speed, the time instant when the camera and the object
intersect.

In order to compute these values, �rst we have to �nd the solution t f +

for the equation

E(t) = (x0 + vx t � (xc + vxct)) sin(! ct + � 0)

� (y0 + vyt � (yc + vyct)) cos(! ct + � 0) = 0

that holds

t f + = min f t r jt r � 0; E(t r) = 0 ;

sign(x0 + vx t r � (xc + vxct r)) = sign(sin(! ct r + � 0)) ;

sign(y0 + vyt r � (yc + vyct r)) = sign(cos(! ct r + � 0))g

Second, we have to �nd the solutiont f � changing! c by � ! c in the above
equation. The minimum value off t f + ; t f � g gives us the sign of the pan speed
and the time instant that we are looking for (see Figure 9).

(vx ; vy)

(vcx; vcy)

FOV

t f +

t f

(vcx; vcy)

(vx ; vy)

FOV

Figure 9: t f + (t f �) time to focus the target object rotating the camera to the left (right)
side.

The trajectories of the objects are estimated by using linear extrapolation
based on their speed vectors. The speed vector of an object iscomputed by

25

Figure 10: Estimation of trajectories and time needed to focus \Kaiku" from \Orio"

considering three previous reference locations of the object (in our prototype,
the locations of the objects during the last three seconds).To solve the above
equation we reduce the problem to �nding the zeros of a polynomial. We
use an approximation ofsin and cos using Taylor polynomials and solve
numerically the equation using Laguerre's method, a root-�nding algorithm
tailored to polynomials. As an example, Figure 10 shows the estimation
of the time needed to focus horizontally a target object by considering the
movements of the objects, the current pan, and the pan speed of the camera.

As we are dealing with a scenario where the objects can move in 3D, we
need to obtain the time needed to focus the target both horizontally (pan)
and vertically (tilt). As pan and tilt movements can be done inparallel, we
obtain the maximum of the time needed to pan and the time needed to tilt
and use that value as the time needed to focus the object. So, the equation
above is used for both movements using the horizontal plane for the pan
(equation above) and the plane de�ned by the trajectory of the object and
the z-axis for the tilt.

Once the estimation has been completed, the system generates the scene

26

to calculate if the requirements of the query (e.g., type of view, percentage
of the target object or part shown, etc.) would be satis�ed. Notice that, as
the objects are moving, when the camera is able to focus the target it could
happen to be occluded by another object. Therefore, the trajectories of all
the objects have to be taken into account too, not only the trajectory of the
camera and the target object.

5. GUI: obtaining the user requirements and presenting the r esults

Inspired by mobile production units, we have developed a friendly GUI
that models the TD work environment (see Fig. 11 andhttp://sid.cps.
unizar.es/MultiCAMBA/) where the user can express his/her requirements
and the results are displayed [34]. The GUI is mainly composedof three
modules:

1. The query interface, where the TD de�nes (using HTML forms) the
requirements that the cameras have to ful�ll and stores/loads/submits
his/her queries.

2. The overview map, which is a 3D representation of the scenario, with
the moving objects and cameras involved, where the results of the
queries are shown.

3. The camera inputs, which are several windows where the TD can pre-
view the camera video streams before broadcasting them.

The results obtained by the system (the cameras ful�lling the TD require-
ments) are displayed in a tabular form in the query interface. The results can
be sorted according to any of the high-level features extracted (see Section 4).

Delivering the information easily and e�ectively is essential to quickly
select the camera to broadcast in live. To achieve this goal we use a powerful
and free software tool, theGoogle Earth API, to display the results in a
friendly interface. Google Earth is a geographic information system that
o�ers a vast amount of geospatial data (satellite images, 3Dbuildings, 3D
terrains, etc.), that helps to develop virtual scenes similar to those in the
real world. Thanks to this, the overview map recreates and keeps up-to-date
the scene in a Google Earth plugin allowing the TD to navigatethrough the
scenario. In the center of Fig. 11 the overview map shows an example of the
moving objects and cameras (a brown triangle indicates its current FOV) in a
sport scenario. Besides, it shows the results to a query submitted by the TD

27

Query Interface Overview Map Camera Inputs

Figure 11: Graphical User Interface (GUI) for the Technical Director.

to retrieve the cameras that can view a certain object (a yellow star is used
to represent the target object, a green hexagon for the cameras ful�lling the
requirements, a blue hexagon for the cameras that will ful�ll them if rotated,
and a red hexagon for the cameras unable to ful�ll them).

The system also uses Google Earth to recreate the view of a camera. This
is very useful mainly in two situations: when the real cameravideo stream
is not available (as in the camera inputs of Fig. 11) and when acamera is
not currently viewing the target and the system estimates the scene it will
capture if it is rotated. The possibility to estimate futurecamera views with
the combined use of Google Earth technology allows the system to show a
realistic recreation of what a camera will view if rotated. This is interesting
because sometimes the best shot is not the one that can be obtained the
fastest. For example, a camera that is not currently viewinga target, but
will be in a matter of seconds, could then provide a better background scene
than a camera that is viewing the target currently, or could cover a greater
percentage of the target, as in the last sample query of Section 3.2 (notice
that in that sample query the system will show to the TD the image of
Fig. 5(d) as a preview of the future view).

28

Once the cameras that obtain the view interesting for the TD are dis-
played in the GUI, he/she has enough information to select thecamera whose
view will be broadcasted. He/she could also request the camera operator to
rotate cameras as suggested by the system. Notice that, with the informa-
tion provided by the system about the required turning (pan,tilt, or both)
needed by a camera to view a certain target object, it could bepossible for
the system to automatically control the cameras to track a target and keep
it centered in the FOV, if ordered by the TD.

6. Experimental Evaluation

In this section, we show the experimental evaluation performed to validate
our system. An experimental comparison of our system with other similar
approaches [4, 5] is not feasible because of the great di�erence on both the
use cases considered (soccer in [4, 5] vs. rowing boat races in our system) and
the input data that the systems need (their systems use real videos while ours
uses information about the location and direction of objects and cameras).
Therefore, we decided to focus the experiments on the evaluation of our
system in the rowing race scenario, considered as a use case and explained
along the paper. More in detail, in this section we �rst explain the prototype
of the system developed and how the simulation of a real rowing race has
been carried out. Then, we show the experiments performed totest: 1) the
quality of the result set, 2) the precision of the estimated time to view an
object, 3) the precision of the estimated percentage viewedof an object,
and 4) the behavior of the system compared with real camera footage4.

6.1. Prototype of the System
We developed a prototype of the system to perform an experimental eval-

uation of our approach (see Figure 12). Regarding the details of the imple-
mentation, this prototype has been developed as a Web application using
HTML5 because the latest Google Earth API (we explained the importance
of this technology for our system in Section 5) is based on JavaScript and
meant to be used in web pages. Then, the core of our system has been de-
veloped as a Java Applet that has been integrated into the Web application.
We selected the Java programming language because for the processing of

4Some videos and interesting moments of the tests are available at http://sid.cps.
unizar.es/MultiCAMBA/Experiments .

29

the camera views we are using a free and powerful Java 3D engine: JMon-
keyEngine (as we explained in Section 4.1). Both JMonkeyEngine and the
Google Earth plugins extract the 3D meshes of objects-of-interest from OBJ
(a geometry de�nition format) �les. Also, we are using a MySQLdatabase
to store the 3D model of the scenario and other interesting information for
the tests.

DB

Applet

Web Interface

Google Earth
 plugins

JavaScript

JMonkeyEngine

Scenario

3D model of
the scenario

3D meshes
of objects

Figure 12: Technical architecture diagram of the prototypeof the system.

We need to enable the communication between the di�erent technologies
and the transfer of information among them. For example, forthe commu-
nication among the applet and the Google Earth plugins our prototype uses
the Keyhole Markup Language (KML)5. For this task, the applet creates and

5https://developers.google.com/kml

30

maintains updated a KML �le with the current location, direction, and other
information of cameras and objects in the scenario, that allthe Google Earth
plugins use to update the scene they show.

6.2. Simulating the Scenario

Testing a live broadcasting of a rowing race in a real-life environment is
di�cult because there are many real objects, devices, and wide-area scenar-
ios involved. Besides, testing the system several times in similar situations
in a real-life environment is challenging. Therefore, we have developed a
simulator that enables us to manage the di�erent cameras andobjects in the
scenario. To simulate the rowing race we have used a �le containing the real
GPS location data of each rowing boat captured every second during the race
celebrated in San Sebastian in September 2010; this rowing race covers a total
distance of 3 miles logically divided in two parts by a turning point. There-
fore, real trajectories are used to move objects in the simulations. Moreover,
the simulator allows us to dynamically change other parameters, such as the
current pan and tilt of each camera, in order to rotate them asthe TD would
request in the real scenario.
The parameters used in the tests are the following ones:

1. There are four rowing boats equipped with a camera; as commented
before, these boats move according to the real GPS location data cap-
tured during the race celebrated in San Sebastian in September 2010.

2. There are three other cameras: one on top of the island, oneon the
promenade, and one on a sailing boat near the rowing boats. The
cameras are set with horizontal focus� h = 70� , vertical focus � v =
45� , pan range � 130� , tilt range � 90� , and pan and tilt speed 5.5
degrees/second.

3. The tests were performed in an Intel Core i5-480M with graphics card
NVIDIA Geforce GT 540M.

For the experimental evaluation we will consider this simulated scenario
and one of the most interesting queries for the TD. In our sample scenario, the
TD may want to know, during the whole event, which cameras areviewing
each of the rowing boats, as he/she could need a shot of a certain boat at
anytime. In fact, during the broadcasting of any event, the TD would be
interested on the cameras that are viewing the main agents (e.g., for a soccer
match it is interesting to know the cameras that are viewing each of the star

31

players). So, as a representative query in the context of ourexperiment we
will continuously process the following one:
\Cameras that can view at least70% of the Kaiku boat"

6.3. Evaluating the Quality of the Result Set
In this �rst experiment, we want to evaluate whether the cameras pro-

vided by the system as an answer are good candidates to provide the views
required by the TD (see Fig. 13). We represent the number of cameras in the
answer (vertical axis) along the event duration (horizontal axis). The blue
line shows the number of cameras provided by the system (someof them cur-
rently ful�lling the requirements of the user and the othersestimated by the
system to be able to do it in the near future) and the red dashedline shows
the number of wrongly chosen cameras. We consider a camera aswrongly
chosen when the system makes an estimation error greater than 25 seconds
in the estimated time to wait until the camera could providedthe view re-
quired. For example, at the beginning the system estimates that the camera
on board the farthest boat (that has two boats between it and the target
and does not currently view the target) will cover 77% of \Kaiku" in 10 sec-
onds, but when those 10 seconds have passed the camera is onlyable to
view 21% because then the occlusion of \Kaiku" is greater than estimated.
This occlusion remains for 30 seconds, and so the system makes a mistake
considering this camera as part of the answer. These kinds oferrors only
happen when the target is occluded due to variations in the speed and direc-
tion of the objects that make the system fail in the estimation of the future
scene. Again, around time 17:30, where the boats are in the �nal sprint, the
system estimates the time needed to view the target and showsthe cameras
in the answer, but some of them overtake \Kaiku" and thus theyare not
able to view it for the rest of the race (due to their rotation limits). How-
ever, thanks to the continuous query processing, estimation errors due to
unexpected changes in the trajectories are quickly corrected.

For the test, the cameras are rotated automatically in orderto track
\Kaiku" according to the results provided by the system. Themaximum
number of cameras that can be part of the answer is six (because the camera
of \Kaiku" cannot view itself due to the physical rotation limits), and the
system shows in the answer at least three cameras during the most critical
time intervals, that is, when the boats are at the turning point (which is a
key moment during the race) around time instant 10:30 and when the other
boats are overtaking \Kaiku" around time instant 17:00-20:00.

32

Figure 13: Quality of the result set (i.e., cameras ful�llin g the user requirements): number
of cameras in the answer set (blue line) and number of wronglychosen cameras (red dashed
line).

Even though the system must perform its calculations every second, the
results are quite satisfactory for the total period of twenty minutes, and
the errors are corrected quickly enough to avoid a negative impact on the
decisions of the TD. Notice that, in our scenario, for the mostpart of the
race a good number of cameras ful�ll the TD requirements, as they are
rotated automatically following the system commands. In this case, the
system succeeds in discarding the irrelevant cameras at each moment and in
ranking the most interesting cameras �rst.

6.4. Testing the Precision of the Estimated Time to View

The goal of this test is to evaluate the error in the time estimation,
measured in seconds between the estimated time and the actual time when
the camera views the target.

In Fig. 14, we show the sum of the time errors for all the cameras at
every time instant. Notice that there are positive and negative values, that
represent when the time estimated by the system is greater than the actual
value (positive) or when it is smaller (negative). We have decided to make
this distinction because a negative error could make the TD to keep an eye on
a camera that actually will need more time than expected to view the target,
which may be an important problem. On the other hand, a positive error (if
it is not too big) means that a camera viewed the target earlier than expected,
and so the negative impact of selecting that camera is minimized. Anyway,

33

notice that the sum of all the errors ranges only between� 5 and +3 seconds,
which is very small for the sum of the errors of all the cameras.

Positive error: when cameras viewed the
target object before the estimated time

Negative error: when cameras viewed the
target object after the estimated time

Time (mm:ss)

T
im

e
E

rr
or

s
(s

ec
on

ds
)

�

Figure 14: Error in the estimated time needed for the camerasto view the target object:
the error is localized at two speci�c time intervals (the start and the end of the race).

The errors are localized within two speci�c time intervals.The �rst errors
occur at the start of the race, when all the cameras are pointing at the same
direction as the front vector of their rowing boats. In this scenario there
are not big changes on the objects' altitude (only slight changes caused by
waves), so in order to test the pan and tilt estimation we haveset initially
all the cameras pointing upwards at the start (maximum tilt). Thus, as the
test starts, the cameras have to pan and tilt to view \Kaiku" and the system
has to estimate the time needed to do it. As at the starting point the system
has not enough information to precisely estimate the speedsof the boats, it
makes some little mistakes that, overall, do not exceed 3 seconds. Thus, this
error is small enough to provide the TD with accurate information. Around
time 17:30 the end of the race is near and there are big variations in the
speed and distance between the boats (as the rowers are making their last
e�orts) and some boat is even overtaken. The system estimates here that
the time needed to view \Kaiku" is smaller than the actual time needed, as
the boats increase their speed in a �nal attempt to win the race.

This test shows that the errors concerning the estimated time to view
the target are small. Besides, those errors are localized intwo narrow time
intervals and they are quickly �xed (in the test, in ten seconds at most),

34

since the corresponding location-dependent query is continuously processed.

6.5. Testing the Precision of the Estimated Percentage Viewed

We also tested the precision of the estimated percentage of the target
viewed by the cameras. Due to the speci�c features of the scenario, a camera
views a percentage below 100% when the target is partially occluded by
another boat (the target usually remains inside the FOV of the cameras). As
explained before, the system is able to compute the percentage of \Kaiku"
that a camera will cover when it is able to view it. For the camera closest to
\Kaiku" (that has no other boat between them), the errors in the estimation
of the percentage only occur when there is an error in the estimation of the
time needed to view it. We have considered these errors in Fig. 14. We show
in Fig. 15 an example for a camera that has two boats between itand the
target (and thus occlusions are possible) and focusing on a short time interval
(the �rst 8 seconds) where some errors occur. The system starts estimating
that the camera will view a smaller percentage than what it will really view,
and as the time goes by the error in this estimation decreases.

Figure 15: Error in the estimated percentage of the target that a camera will view in the
�rst eight seconds.

6.6. Testing the System Against Real Camera Footage

We have also tested the system against real camera footage. Speci�cally,
we have used the video produced by the Spanish broadcasterEiTB for the
rowing race celebrated in September 2010. The goal of this test was to

35

compare the results o�ered by our system with the real event to check the
behavior of our proposal. Fig. 16 shows an extract of two seconds of a camera
covering the end of the race (the real images are shown on the bottom of each
frame) compared with the information generated and exploited by the query
processing in our system (shown at the top of each frame). Notice that the
extents of the rowing boats are represented in green by the system, for an
easy comparison with the real footage. At the beginning of this live footage,
the \Urdaibai" boat has just crossed the �nish line (it is the only boat we
see in the �rst frame in Fig. 16(a)); it is followed by \Kaiku" , that enters the
FOV of the camera 1 second later, being completely captured by the camera
exactly at time instant 2.08 seconds (Fig. 16(b)).

(a) (b)

Figure 16: Testing the system against real camera footage (the information generated by
our system is on the top): in two consecutive seconds.

At the time instant when the live footage begins, our system estimates
that the camera will obtain a full view of the \Kaiku" boat in 1 .85 seconds.
Notice that the error committed is not very signi�cant: the TD will be
alerted just 0.23 seconds before the desired situation is captured by the real
camera. This small error is caused by the slight inaccuracy of the GPS data
transmitted by the boats and the fact that the location of thereal camera
was estimated (the TV broadcaster did not provide us with this information).
However, the results obtained by the system would have been good enough
to help the TD to select this camera to view the \Kaiku" boat.

7. Conclusions

In a live broadcasting, the higher the number of cameras available, the
more di�cult the selection of the camera whose view must be broadcasted.

36

So, in order to alleviate this task, we have developed a system that allows a
Technical Director (TD) to express his/her interests in speci�c camera views,
and obtains automatically a sorted set of cameras that couldprovide such
views. The main features of our proposal are:

� The system analyzes camera views in real-time by considering a 3D
model of the scenario updated continuously with the information of
objects and cameras involved. Besides, it provides a good performance
in scenarios where the target object is partially or totallyhidden by
other objects, as it takes occlusions into account.

� The system obtains high-level features of a camera view, such as: the
speci�c objects viewed, the percentage of them covered, thepercentage
of the shot �lled by a speci�c object, the kind of view of the object
obtained (e.g., front, top, side), etc.

� The system generates location-dependent queries, using the informa-
tion provided by the TD, and continuously processes them to obtain
an accurate answer. In this way, our proposal supports highly-dynamic
scenarios.

� The system performs e�ciently. The experimental results show the
feasibility of our proposal, that can be used for the real-time selection
of cameras. It executes a query in less than a half second.

� The system provides a user-friendly GUI that allows the TD to easily
indicate the speci�c view he/she is interested in and presents the results
to the queries.

So, as long as the location of the objects-of-interest and cameras (and an
approximation of the extent of the objects) can be obtained in real-time, the
system presented can be applied to any context. In some situations it could
be challenging to obtain this information for certain objects; however, our
approach does not rely on a speci�c technology nor requires 100% precision
of these data to e�ectively distinguish between cameras that are interesting
or not for a given query and to facilitate the selection of theTD by providing
a raking of the candidate cameras.

As future work, we plan to provide the system with the capability to
manage knowledge related to cinematic shots and scenarios.In this way, TDs
could use technical language to communicate the view they are interested in
(e.g., a \high-angle shot" of the �rst boat to cross the �nish line).

37

Acknowledgments.
This work has been supported by the CICYT project TIN2010-21387-C02

and DGA-FSE. We thank David Ant�on and Francisco J. Ser�on for their help
with the implementation of our prototype and technical support, respectively.

References

[1] Y. Chen, H. Sampathkumar, B. Luo, X. Chen, iLike: Bridging the semantic gap in
vertical image search by integrating text and visual features, IEEE Transactions on
Knowledge and Data Engineering PP (99) (2012) 1.

[2] Y. Yildirim, A. Yazici, T. Yilmaz, Automatic semantic co ntent ex-
traction in videos using a fuzzy ontology and rule-based model, IEEE
Transactions on Knowledge and Data Engineering 25 (1) (2013) 47{61.
doi:http://doi.ieeecomputersociety.org/10.1109/TKDE .2011.189.

[3] S. Ilarri, E. Mena, A. Illarramendi, Location-dependent query processing: Where we
are and where we are heading, ACM Computing Surveys 42 (3) (2010) 1{73.

[4] J. Wang, C. Xu, E. Chng, H. Lu, Q. Tian, Automatic composit ion of broadcast sports
video, Multimedia Systems 14 (4) (2008) 179{193.

[5] K. Choi, S. Lee, S. Y., Automatic broadcast video generation for ball sports from mul-
tiple view, in: International Workshop on Advanced Image Technology (IWAIT'09),
2009.

[6] F. Chen, C. D. Vleeschouwer, Personalized production ofbasketball videos from
multi-sensored data under limited display resolution, Computer Vision and Image
Understanding 114 (6) (2010) 667{680.

[7] A. Ekin, A. M. Tekalp, R. Mehrotra, Automatic soccer vide o analysis and summa-
rization, IEEE Transactions on Image Processing 12 (7) (2003) 796{807.

[8] N. Nitta, Y. Takahashi, N. Babaguchi, Automatic personalized video abstraction for
sports videos using metadata, Multimedia Tools and Applications 41 (1) (2009) 1{25.

[9] M. H. Kolekar, Bayesian belief network based broadcast sports video indexing, Mul-
timedia Tools and Applications 54 (2011) 27{54.

[10] C.-C. Cheng, C.-T. Hsu, Fusion of audio and motion information on HMM-based high-
light extraction for baseball games, IEEE Transactions on Multimedia 8 (3) (2006)
585{599.

[11] N. Babaguchi, Y. Kawai, T. Ogura, T. Kitahashi, Personalized abstraction of broad-
casted American football video by highlight selection, IEEE Transactions on Multi-
media 6 (4) (2004) 575{586.

38

[12] C. Xu, Y.-F. Zhang, G. Zhu, Y. Rui, H. Lu, Q. Huang, Using webcast text for semantic
event detection in broadcast sports video, IEEE Transactions on Multimedia 10 (7)
(2008) 1342{1355.

[13] C. Xu, J. Wang, H. Lu, Y. Zhang, A novel framework for semantic annotation and
personalized retrieval of sports video, IEEE Transactionson Multimedia 10 (3) (2008)
421{436.

[14] G. Zhu, Q. Huang, C. Xu, L. Xing, W. Gao, H. Yao, Human behavior analysis for
highlight ranking in broadcast racket sports video, IEEE Tr ansactions on Multimedia
9 (6) (2007) 1167{1182.

[15] F. Chen, D. Delannay, C. D. Vleeschouwer, An autonomousframework to produce
and distribute personalized team-sport video summaries: abasket-ball case study,
IEEE Transactions on Multimedia 13 (6) (2011) 1381{1394.

[16] T. D'Orazio, M. Leo, A review of vision-based systems for soccer video analysis,
Pattern Recognition 43 (2010) 2911{2926.

[17] M. H. Bianchi, Automatic video production of lectures using an intelligent and aware
environment, in: Third International Conference on Mobile and Ubiquitous Multi-
media (MUM'04), ACM, 2004, pp. 117{123.

[18] Y. Rui, L. He, A. Gupta, Q. Liu, Building an intelligent c amera management system,
in: Ninth ACM International Conference on Multimedia (MULT IMEDIA'01), ACM,
2001, pp. 2{11.

[19] Q. Liu, D. Kimber, J. Foote, L. Wilcox, J. Boreczky, FlyS PEC: a multi-user video
camera system with hybrid human and automatic control, in: Tenth ACM Interna-
tional Conference on Multimedia (MULTIMEDIA'02), ACM, 200 2, pp. 484{492.

[20] C. Zhang, Y. Rui, J. Crawford, L.-W. He, An automated end-to-end lecture capture
and broadcasting system, ACM Transactions on Multimedia Computing, Communi-
cations and, Applications 4 (1) (2008) 6:1{6:23.

[21] R. Heck, M. Wallick, M. Gleicher, Virtual videography, ACM Transactions on Mul-
timedia Computing, Communications, and Applications 3 (1), 28 pages.

[22] D. G. Aliaga, Y. Xu, V. Popescu, Lag camera: A moving multi-camera array for
scene-acquisition, Journal of Virtual Reality and Broadcasting 3 (10).

[23] H.-S. Park, S. Lim, J.-K. Min, S.-B. Cho, Optimal view selection and event retrieval
in multi-camera o�ce environment, Multisensor Fusion and I ntegration for Intelligent
Systems 35 (2009) 45{53.

[24] R. Yus, S. Ilarri, E. Mena, Real-time selection of videostreams for live TV broad-
casting based on query-by-example using a 3D model, Multimedia Tools and Applica-
tionsPublished online: June 2013, 27 pages, DOI: http://dx.doi.org/10.1007/s11042-
013-1550-5.

39

[25] J. Cha, M. Eid, A. E. Saddik, Touchable 3D video system, ACM Transactions on
Multimedia Computing, Communications, and Applications 5 (4) (2009) 29:1{29:25.

[26] K. Serr, T. Windholz, K. Weber, Comparing GPS receivers: a �eld study, URISA
Journal 18 (2).

[27] T. Ansary, M. Daoudi, J.-P. Vandeborre, A bayesian 3-D search engine using adaptive
views clustering, IEEE Transactions on Multimedia 9 (1) (2007) 78{88.

[28] Y. Gao, M. Wang, Z.-J. Zha, Q. Tian, Q. Dai, N. Zhang, Lessis more: E�cient 3-D
object retrieval with query view selection, IEEE Transactions on Multimedia 13 (5)
(2011) 1007{1018.

[29] S. Ilarri, E. Mena, A. Illarramendi, R. Yus, M. Laka, G. M arcos, A friendly location-
aware system to facilitate the work of technical directors when broadcasting sport
events, Mobile Information Systems 8 (1) (2012) 17{43.

[30] D. Terry, D. Goldberg, D. Nichols, B. Oki, Continuous queries over append-only
databases, ACM SIGMOD Record 21 (2) (1992) 321{330.

[31] R. Yus, E. Mena, J. Bernad, S. Ilarri, A. Illarramendi, L ocation-aware system based
on a dynamic 3D model to help in live broadcasting of sport events, in: 19th ACM
International Conference on Multimedia (MM 2011), ACM, 2011, pp. 1005{1008.

[32] Y. Tao, C. Faloutsos, D. Papadias, B. Liu, Prediction and indexing of moving ob-
jects with unknown motion patterns, in: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, SIGMOD '04, 2004, pp. 611{622.

[33] A. M. Hendawi, M. F. Mokbel, Predictive spatio-temporal queries: a comprehensive
survey and future directions, in: Proceedings of the First ACM SIGSPATIAL Inter-
national Workshop on Mobile Geographic Information Systems, MobiGIS '12, 2012,
pp. 97{104.

[34] R. Yus, D. Anton, E. Mena, S. Ilarri, A. Illarramendi, Mu ltiCAMBA: A system to
assist in the broadcasting of sport events, in: Eighth Annual International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQ-
uitous 2011), Springer, 2011, pp. 238{242.

40

