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Abstract

For a Technical Director (TD) in charge of a live broadcastig, selecting the
best camera shots among the available video sources is a l@ming task,
even more now that the number of cameras (some of them mobite attached
to moving objects) in the broadcasting of sport events is ineasing. So, the
TD needs to manage a great amount of continuously changingfanmation
to quickly select the camera whose view should be broadcastdesides, the
better the decisions made by the TD, the more interesting theontent for the
audience. Therefore, the development of systems that couldlp the TD with
the selection of camera views is demanded by broadcastingy@mizations.

In this paper, we present the system MultiCAMBA that helps TDsin the
live broadcasting task by allowing them to indicate in run-tme their interest
in certain kind of shots, and the system will show the cameraisat are able to
provide them. To achieve this task, the system manages lo@at-dependent
gueries generated according to the interests of the TD. Mareer, to avoid
the use of costly on line real-image processing techniquegmothe camera
views, such real camera views are recreated in a 3D engine ging the
information contained in a 3D model of the scenario. This madlis updated
continuously with real-time data retrieved from the real olpects and cameras
in the scenario. In this way, the system extracts high-levelemantic features
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of 2D projections of the 3D reconstruction of the camera viey We present
a prototype of the system and experimental results that shotine feasibility
of our proposal.

Keywords: Content selection in run-time, mobile multi-camera
management, location-aware systems

1. Introduction

There exist many scenarios where it is important to select ang many
cameras the one whose view is the most interesting. For exadepn the live
broadcasting of sport events, a Technical Director (TD) hato make quick
decisions to select the camera video stream to broadcast.rthermore, nowa-
days broadcasting organizations are increasing the numbafrcameras cover-
ing sport events (e.g.Sky TV uses 24 cameras in Premier League matches).
The higher the number of cameras available, the richer the mi@nt that can
be obtained, and therefore more complicated is for the TD taekect the best
one. Therefore, it would be interesting to develop systemsadt could help
the TD to select the most interesting camera view among manysrces.

For example, consider the TD in charge of the live broadcasg of a
rowing race (this is a very popular sport along the north of Spn). From
the broadcasting perspective, the technology and equipmdnvolved in the
event nowadays include multiple cameras (in sailing boat# a helicopter,
in the harbor, in a nearby island, etc.) and a GPS receiver orvery boat.
In this context, it would be very helpful to have a system wher the TD
could de ne his/her interest on a certain view (e.g.a view of the front of
two rowing boat$ and obtain the list of cameras that could provide it.

A relevant feature of such a system would be to support the psibility of
analyzing camera views in real-time to extract enough inforation to nd out
what they are showing. For this task, a popular approach is tprocess the
real images provided by the cameras. However, using real ireggrocessing
techniques to extracthigh-level featureselated to the semantics of the scene,
such as the kind of objects or the speci c identity of the obf, is a challenge
(and even more in real-time). This is related to the problem fothe well
known \semantic gap" that exists between low-level featuseand high-level
semantics, which has attracted considerable research atten (e.g., see [1]
and [2]). For example, consider the camera shot in Fig. 1(ayjhere all the
rowing boats are shown from a large distance to allow the viewto have a



general overview of the race. Real image processing techusig would face
two main problems:

(b)

Figure 1: Real camera footage (a) and interesting and other lojects in the scene (b).

1. Along with the rowing boats there exist multiple moving obgcts (jud-
ges, support team, etc.) very close to them (in Fig. 1(b) we ka
highlighted the rowing boats and the other moving objects h red
dotted and yellow circles, respectively). So, it will be dicult to dis-
tinguish the objects-of-interest(rowing boats) from the other objects
in the scenario based on their visual features and moving petns.

2. Even if the objects that are rowing boats could be identi d, the TD
could be interested in a speci ¢ boat (e.g., \Kaiku" in Fig. 1b), high-
lighted with an arrow). Identifying this boat automatically among the
others will be very di cult.

In this paper, to overcome these di culties, we present the ystem Mul-
tiCAMBA (Multi-CAMera Broadcasting Assistant) that uses a di erent ap-
proach. Instead of on line analyzing the real images providéy the cameras,
such real camera views are recreated in a 3D engine by using thformation
contained in a 3D model of the scenario. The system managesl&eeps this
3D model up-to-date in real-time according to the informatin of objects-
of-interest (identi cation, location, direction, approximate extent, etc.) and
cameras (location, direction, Field of View {FOV{, etc.) in the scenario.
In this way, the system obtains projections of the 3D recongiction of a
camera view to extract high-level semantic features of theal camera view.
So, the proposed system is able to automatically and accuedy detect the
speci ¢ objects that are viewed by a camera (e.g., \the Kaikwowing boat"
vs. simply \a boat"). Moreover, the system obtains other hig-level features
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of each object detected in a camera view, such as: their amouisible in the
camera view (as a percentage), the viewpoint of the camerancerning each
object (e.g., it could view the front and top of the object), he amount of the
shot occupied by them (that determines the space availablerfuninteresting
objects), etc. We present in this paper the e cient methods hat we have
developed to obtain this information continuously and in ral-time (in our
tests, every second), which makes the system suitable farelibroadcasting.
Due to the dynamic nature of sport event scenarios (objectsid cameras
can move and camera views can change), the system must reeatd con-
tinuously the location-dependent querie§3] posed by the usér(e.g., obtain
cameras closer than 40 meters from a rowing byafThese queries are gener-
ated based on the requirements of the TD expressed through seu-friendly
Graphical User Interface (GUI). The TD can indicate in the GUI the speci c
view he/she is interested in, and the results obtained by theystem (the
cameras that could satisfy the requirements of the TD) will & presented in
a 3D reconstruction of the scenario.
In summary, the main contribution of our proposal is the dedepment of a
system that:

Enables the TD to indicate in run-time his/her interest in cetain kinds
of shots through a user-friendly GUI, and the system selectBdm the
available sources) the cameras that can provide such intetimg shots.

Processes in real-time the views provided by the cameras mout the
need to analyze real images. For this purpose, it makes useao8D
model updated continuously with real-time data from the sc®ario.

Obtains high-level semantic features of the camera views eiently
enough for real-time processing, using a 3D engine and the-igpdate
information of the 3D model.

So, as long as the locations of the objects-of-interest andnseras (and
an approximation of the extent of the objects) can be obtainkin real-time,
the system presented can be applied to any context, as no asgiion is
made regarding the number of cameras in the scenario (the wi®f each one

INotice that the Technical Director is the user of the system ad we will use both terms
to refer to him/her.



can be analyzed separately), the kind of scenario (the systecan be used in
scenarios involving moving objects, cameras, and queridsoat them), and
the positioning mechanism used to obtain the locations of ¢hobjects and
cameras. In some situations it could be challenging to obtathis information
for certain objects (e.g., it could be di cult to obtain the r eal-time precise
location of a ball or the extent of soccer players that move #ir limbs while
running). However, our approach does not rely on a speci ¢ tecology to
obtain this information nor requires 100% precision of thedata to e ectively
distinguish between cameras that are interesting or not fa given query.

The rest of this paper is structured as follows. We review sanrelated
works in Section 2. Then, we present the architecture of theystem in
Section 3. We describe the approach proposed to analyze thews of the
cameras using the 3D model of the scenario in Section 4. We kexp the
GUI proposed for the TD in Section 5; the GUI allows the TD to eabi
de ne his/her queries and displays the results obtained. Wehen present
some experiments performed to validate our proposal in Sext 6. Finally,
conclusions and future work are included in Section 7.

2. Related Work

Up to the authors' knowledge, no other work has focused on theal-time
selection of camera views based on the extraction of highvééfeatures of im-
ages provided by multiple moving cameras using a 3D model bt scenario.
However, there is extensive research on the analysis of reabhges to obtain
what a camera is viewing. These studies can be classi ed aating to the
kind of processing performed on the video streams (on-line @ine). Pro-
posals to process the videos on-line usually take into acobuhe cinematic
features of the views provided by the cameras, such as the shges (e.g.,
a long shot, a close-up shot, etc.). Considering high-levielatures related to
the semantics of the scene, such as the specic object, thesibie amount
of the object, or object-basedeatures, such as the color and shape of the
objects, their interactions, etc., may be computationallytoo costly for on-
line processing, even though it would provide richer semaatdetails. Works
to analyze videos oine, and so having more time for the pro@sing, use
object-based features to extract events of interest (e.@,pitching scene in a
baseball video) and usually consider only static cameras.



2.1. Real-Time Camera Selection for Sport Events

We can mention [4, 5], that share the goal of our proposal oflseting
camera views in real-time for TV broadcasting, even thouglheir approaches
are based on analyzing the real images provided by the can®ra

The context of the system presented in [4] is soccer gamesrdlies on the
well-de ned structure of a soccer broadcast to alternate #hselection between
cameras that provide a far view and cameras that provide a miedn/close-up
view. The view switching method proposed in that paper doesohanalyze
high-level features of the camera views and the authors assel that all the
cameras are following the game action (and hence they haveiaitar con-
tent). So, their problem is to select those cameras providina clear view
(they discard blurry images). The main di erences betweenur work and [4]
is that we allow the TD to de ne the criteria to be considered ¢ select a
camera view, and moreover our proposal is able to obtain a gboumber of
high-level features of a camera view in live. Besides, we reako assumptions
about the current views of the cameras.

In [5] a system is also presented to automatically select iivé the camera
to broadcast in a soccer game. As we do, the authors also coesitbw-
cost cameras as a way to reduce the costs of a sport broadaasti They
assume that there exist four cameras located along the elahd they process
their views to obtain the size of the ball in each one. With tid information,
they propose to select the camera whose view shows the latgaga of the
projected ball. Therefore, their approach is focused on baports and under
the assumption that the best views are those that provide a ker view of
the ball, while ours can be applied to other contexts where Iseting among
many camera views is needed.

The goal of these two works is to select automatically the biesamera to
broadcast in soccer events based on parameters as image iguaHowever,
our approach, that is not focused in any speci ¢ sport, enaé$ the TD to
de ne the kind of camera he/she wants to broadcast based onedhobjects
that this camera views.

2.2. Assistants for Sport Videos Summarization

A number of works have focused their e orts on the specic pitdem
of helping producers of sport videos. For example, as part tife APIDIS
project, in [6] a system that helps the video production andigeo summa-
rization in the context of basketball games is presented. Bwork presented
in [7] tackles the problem of summarizing videos of soccemgeas by applying
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di erent image processing algorithms to analyze the inputideos extracting

cinematic and object-based features. In [8] the problem oideo summariza-
tion, based on metadata describing the semantic content of NEG-7 videos,

is considered in the context of baseball games. Cricket vimke as well as
soccer videos, are used to validate the work in [9], which dgjis audio fea-

tures (such as an increase in the audio level of the voice oEthommentators
or the cheers of the audience) to extract excitement clipsdim sport videos.
Along the same line, the work in [10] bene ts from audio and main cues
to extract highlights from baseball videos. Textual overlgs appearing in

images are exploited in [11] to create personalized sumnaegriof American
football videos (i.e., video abstracts that take into accat the user prefer-

ences); similarly, works such as [12, 13] use webcast texts@sated to the

video for event detection. In [14] the authors focus on the pblem of rank-

ing, structuring, and summarizing highlights to match a uses personalized
guery, within the context of racket games (tennis and badmton). Like [14],

most works in this area emphasize the importance of takingtmaccount the

user preferences and/or expectations [15]. A detailed sesvof soccer video
analysis systems can be found at [16].

All these works are concerned about facilitating the produan of sport
events, like the proposal in this paper, but they have a di eent purpose.
Thus, the purpose of these works is usually to perform an autatic video
production in an o ine setting (so, for example, achieving agood perfor-
mance for real-time processing is not an issue) by using reéalage process-
ing techniques to extract low-level features (e.g., colaexture, shapes, etc.)
that will be processed to obtain cinematic features (i.e.hst classi cation).

2.3. Camera Management for Broadcasting

Several works in the literature have considered the probleof automatic
camera management for recording and broadcasting lecturasd talks. For
example, in AutoAuditorium [17] two cameras and microphones are used to
obtain information about what is happening on the stage andgform an
automatic audio mixing, tracking of the people on stage, andamera selec-
tion. Another interesting work is [18], which implements searal production
rules, inspired by the way professional video producers woiin order to take
the appropriate recording decisions. The systeflySPEC [19] combines a
PTZ (Pan-Tilt-Zoom) camera and a panoramic camera and bents from
the involvement of the audience, participating through exiicit requests, to
reduce the probability of unsatisfactory recordings. Thdlicrosoft Research
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LecCasting SystenfMSRLCYS) [20] supports a scripting language to facilitate
the customization of production rules for di erent room corgurations and
production styles. As a nal example, theVirtual Videography [21] advocates
an o ine processing to have more time and information to pedrm the video
production.

Although the context and purpose of these works is di erent &m the
ones considered in this paper, they highlight the interestf the development
of automatic video production techniques to save productiocosts and en-
able fast access to multimedia information. Several otheronks focus on
multi-camera management (e.g., [22, 23]). However, they w#dly consider
only cameras that are static (i.e., at xed locations), whegas the cameras
considered in our proposal can move.

3. Overview of the System

In this section we provide an overview of the steps followed, lthe sys-
tem to accomplish the goal of obtaining the camera views thdul Il the
requirements of the TD (see Fig. 2):

| Obtaining the user requirements |
/ | Generation of the formal query |

}

Execution of the query 3D Model Management
N, |Processing of the camera views }‘ ~~~~~ Obtaining of information about
v i AN cameras and objects
Technical |Filtering and ranking of the resultsl ! ¢ \f . ®
Director T @ | Update of the 3D Model | \:”:'j.,a]
\_| Presentation of the results to the userl T8 .

NO

YES
END

3D Model

Figure 2: Main steps followed by the system.

1. 3D model managemenfsee Section 3.1). The 3D model of the scenario
is an essential part of our system as it stores the informaticabout the
di erent objects and cameras in the scenario. The system nmains
this 3D model updated in parallel to the processing of user qties.
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2. Obtaining the user requirements The requirements of the user are
captured through an easy-to-use interface (see Section he system
provides two mechanisms for that: a) the TD selects from listthe
target object/s that must be part of the view and the constrants that
the camera view must ful Il, or b) the TD clicks on prede ned queries.
Complementary, the ideas presented in [24] can be applied ¢mable
the TD to de ne his/her requirements through an interface fo the
de nition of 3D scenes. In addition, touchable 3D interface[25] could
be helpful to improve the immersion of the TD in this processlthough
this is out of the scope of this paper.

3. Generation of the formal query(Section 3.2). By analyzing the infor-
mation provided by the user, the system generates a locatialependent
guery capturing his/her requirements.

4. Execution of the querySection 4). The system obtains high-level fea-
tures of the camera views (objects viewed, amount of them @red,
kind of view, etc.) and the cameras are ltered to obtain thos whose
view ful lls the user requirements. Then, the answer set isanked
according to the user preferences.

5. Presentation of the results to the user The results obtained by the
system are presented to the user in the GUI, both in a tabular f;m
and in a 3D reconstruction of the scenario (see Section 5).

In the following sections we explain with more details thesgeps.

3.1. 3D Model Management

Obtaining the cameras that are able to provide the TD with therequired
view is possible thanks to the use of an up-to-date 3D model.h& system
e ciently keeps the 3D model updated with the information ofthe objects
and cameras in the scenario (obtained from di erent sensgrsThis is not an
overload for the system (as it only involves obtaining the teresting infor-
mation and storing it) and it can even be performed in anothecomputer.
The 3D model stores the following information about the obs involved in
the scenario: identi cation, location and direction, extat, and front and top
vectors (see Fig. 3).

The location and direction of an object, that can be providedor example,
by a GPS and a compass (as in the scenario we have tested in ®ec6), have
to be continuously updated to obtain accurate results, as #y are highly-
dynamic data. The imprecision of the localization mechams could lead
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top vector object’s centroid

maximum tilt
of the camera _

(#/-90°) ~ maximum pan
camera of the camera
(+/-90°)

id="Kaiku” front vector
name="“Kaiku Rowing Club”

Figure 3: An object-of-interest modeled in our system.

to imprecise answers (e.g., in [26] the authors report an agacy of around
1 meter for some GPS receivers), but our approach is indepemd of the spe-
ci ¢ location mechanism used. So, it is possible to combinéneeded, several
positioning mechanisms to increase the accuracy, even fodoor events (by
using overhead cameras, sensors, Wi-Fi signal strength nsaptc.).

We want to extract some high-level features, interesting forDs, of ob-
jects inside the FOV of a camera, such as the percentage of theisible or
the viewpoint obtained. Therefore, we need to represent tee objects in the
3D space using the approximate volume (extent) of space thdiese objects
occupy. However, our system does not need a precise 3D meshheké ob-
ject to accomplish its main goal of discarding non-intereisty cameras (as
we show in our tests in Section 6, where we used an approximateent for
the di erent types of objects-of-interest). Of course, themore precise the
extent of an object-of-interest provided to the system, thenore accurate the
information it will obtain regarding the percentage of the bject viewed by
a camera. Thus, users could generate a simple 3D model fordbebjects
or even search for similar already-generated meshes in 3Ddabdatabases
(e.g., by using keywords or even real images, as studied if7,[28]).

As the extent of objects-of-interest could change dynamidglduring the
event it could be interesting to provide the system with thisinformation.
However, in real life only small parts of these extents chan@e.g., the rows of
a rowing boat, the limbs of a soccer player, etc.). Thus, theegeral accuracy
of our system will not be a ected signi cantly if non-deformable extents for
objects-of-interest are used (in our tests we used xed 3D rdels).
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Besides, the front and top vectors must be de ned for this egnt in order
to allow the system to distinguish between the di erent kind of views of
an object (top/bottom, front/rear, left/right, or any comb ination of two or
three elements chosen from the three previous pairs). In thay, the system
can answer queries retrieving, for example, cameras redagla top view of
an object. In our system, 90-degree angles are consideretiveen the front
and top vectors, the sides and the front, and the sides and thep. Thus,
no more than three viewpoints are going to be usually seledtat the same
time in a query for the same object.

Concerning the cameras, which play a key role in the systemewonsider
that they can rotate (both vertically and horizontally) and change their loca-
tion (if they are attached to moving objects). We model a canma ¢ as shown
in Fig. 4. In the gure, we identify several elements: , and , are the hor-
izontal and vertical angle of view (that de ne theField of View {FOV{ of
the camera), respectively; , max, min, @nd gpeeq are the current pan, the
maximum pan possible, the minimum pan possible, and the papeed (de-
grees/second) of such a camera, respectively; nally, max, min, and speed
are the current tilt, the maximum tilt possible, the minimum tilt possible,
and the tilt speed (degrees/second), respectivély Angles that represent a
pan to the right ( ) or a tilt upwards ( ) from the corresponding vector are
considered positive and those that represent a pan to the tidf ) or a tilt
downwards () are considered negative. Besides, each camera has a unique
identi er.

3.2. Generation of the Formal Query

The system generates queries using the requirements de nieglthe TD.
These queries are expressed using an SQL-like syntax withetlfiollowing
structure:

SELECT projections
FROM sets-of-objects
WHERE boolean-conditions
[ ORDER BY sorting-criteria |

where projections is the list of attributes the TD is interested in, sets-of-
objectsis a list of the kinds of objects (e.g., rowing boats, helictgrs, etc.)

2In this work we do not deal with the possibility of zooming.
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Figure 4: Modeling a camera: pan (horizontal plane) (a), andtilt (vertical plane) (b).

interesting for the query, boolean-conditionsis a boolean expression (com-
posed by location-dependent constraints [3] and other cdraints) that must
be true for the objects retrieved by the query, andsorting-criteria is the
ordering criteria that will be used for the presentation of lhe results. The
ORDER BY clause is optional, as in standard SQL. However, the sorting
criteria can be particularly interesting when dealing withqueries that re-
trieve cameras, as several cameras may satisfy the query stomints and
some criteria is needed to show the most promising resultsstr

To extend the previous SQL-like syntax in order to support &the features
of our proposal, we de ne the following functions:

checkKindOfView(target, cam,<views>) returns a vector containing a
true value for each kind of view in the vectok views> that the camera
cam is obtaining of the target objecttarget. Another variant of this

function is checkKindOfView(target, cam,<views>, t), that performs
the same operation but taking into account the estimated vie that

the camera will obtain aftert seconds.

percentageShot(target, view, cameturns the percentage of the shot of
the cameracamoccupied by the target objectarget, percentageShot(target,
view, cam, t) performs the same operation for the estimated view that
the camera will obtain aftert seconds. Notice that if the user selects
a speci ¢ viewpoint for the view parameter, which is indeed optional,
these functions will obtain the amount of the shot occupiedybthe
viewpoint of the target object.
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percentageObject(target, view, canteturns the percentage of the target

object target that the cameracam is viewing; percentageObject(target,

view, cam, t), performs the same operation for the estimated view that
the camera will obtain aftert seconds. If the user selects a specic
viewpoint for the view parameter, which is optional, these functions

will obtain the percentage of the viewpoint covered.

preferenceDegree(target, cam, ) returns a numeric value that allows
the system to rank cameras that ful Il the user requirementsccording
to how well their views t his/her preferences. The user sets, which
represents the importance of the percentage of the shot opeed by
the target with respect to the percentage of the object viewe(which
will have a weight of 1 ). In our prototype we advocate computing
the preference degree as follows, in order to represent titae higher
the percentage the better, but any other function could be sl

percentageof _shot_.occupied + percentageof _target_viewed (1 )

rotationToView(target, cam) returns a vector with the pan and tilt
angles that the cameracam has to turn to view the target object
target This function makes use ofpanToView(target, cam) and filt-
ToView(target, cam), that obtain the pan and tilt needed to view the
target, respectively.

timeToView(cam, < pan, tilt>) returns the time needed by a camera to
turn horizontally pan degrees and verticallytilt degrees. This function
makes use oftimeToPan(cam, pan) and timeToTilt(cam, tilt) , that
obtain the time needed to pan and tilt a certain angle, respaely.

distance(target, cam)returns the distance between a cameream and
a target objecttarget.

To show the use of this SQL-like syntax (a preliminary versiocan be
found at [29]), we rst consider an example where the TD ask$¢ system
about cameras that view right now at least 30% of the \Kaiku" boat #t |ls
at least 10% of the shotThe request will be translated to the following query
(we assume that for the TD the percentage viewed is more imgant than
the percentage of the shot occupied and considers= 0.4):
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SELECT O.cam.id, score
FROM Objects AS O

WHERE < pani,tilt > =rotationToView(Kaiku, O.cam)
AND pan=0 AND tilt=0
AND percentageObject(Kaiku, ‘any', O.cam) 0.3
AND percentageShot(Kaiku, 'any’, O.cam) 0.1
AND score=preferenceDegree(Kaiku, O.cam, 0.4)

ORDER BY score DESC

As the TD wants to obtain the cameras viewing the target objectight
now, the query includes a conditionggan=0 and tilt=0 ) that ensures that the
cameras in the answer set ful Il this constraint. Besides,hie function pref-
erenceDegreas used to take into account the TD preferences in the ranking
It is interesting to highlight that the system evaluates thefunctions percent-
ageObject percentageShotaand preferenceDegreeat the same time, using a
single rendering of the view and with a single pass (see Senti4.1).

Now, considering that the TD asks aboutameras that can view the front,
top and side of \Kaiku" in less than 20 seconds, sorted by therpentage of
the target viewed and the time needed to view(ihe largest the percentage
and the shorter the time, the more appropriate a camera is)he system
generates the following query:

SELECT O.cam.id, pct, time, pan, tilt
FROM Objects AS O
WHERE < pan,tilt > =rotationToView(Kaiku, O.cam)
AND time=timeToView(O.cam, <pan,tilt>)
AND time < 20
AND views=checkKindOfView(Kaiku, O.cam,
<front, top, side>, time)
AND views=<true, true, true>
AND pct=percentageObject(Kaiku, 'any’, O.cam, time)
ORDER BY pct DESC, time

Notice that checkKindOfViewchecks, with a single rendering, the kind of
view that the TD has requested (i.e., viewing the front, top ad side of the
target). Besides, the functionpercentageObjecbbtains the percentage of the
target that the camera will cover once it views the target (irtime seconds).
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4. Execution of the Query

Our proposal handles the processing @cation-dependent querieswhich
are queries whose answer depends on the locations of the otsjenvolved [3]
(e.g., obtain the cameras closer than 25 meters from the Kaiku rovgrboa).
These queries are usually considered asntinuous queries[30], whose an-
swer must be continuously refreshed (in our tests, every sed) due to the
movements of the objects. In the scenarios we consider, notythe objects-
of-interest can change their location but also the camerasaqg they can be
attached to moving objects). Moreover, the cameras can udlyabe rotated
(pan and tilt); therefore, cameras that are not ful lling currently the require-
ments of the TD could satisfy them in a near future, due to theicombined
change of location, pan, and tilt. In addition, the system isble to process
multiple request at the same time; so, the TD can de ne a new guy while
the system is (continuously) executing others.

The most important task when executing a query is to analyzehe views
of the cameras (see Section 4.1). The goal of this analysigdsobtain high-
level features of the camera view to check if it ful lls the TDrequirements.
The following high-level features are extracted by the sysin from a camera
view:

The speci ¢ objects viewed (e.g., in Fig. 5(a)CAM1 views the rowing
boats \Kaiku" {in green{ and \Urdaibai" {in red{) and some inf orma-
tion about them:

{ The distance to the object (e.g, in Fig. 5(a), the distance Ieen
CAM1 and the boat \Urdaibai" is 17 meters).

{ The percentage of the object covered (e.g., in Fig. 5(bLAM2
views 22% of the boat \Kaiku").

{ The percentage of the shot occupied by the object (e.qg., ing=i5(b),
\Kaiku" lls 26% of CAM2 view).

{ The kind of view obtained of the object (e.g., in Fig. 5(b)CAM2
views the front and left side of \Kaiku").

{ The percentage of the viewpoint of the object covered (e.gn
Fig. 5(b), CAM2 views 47% of the front and 29% of the left side
of \Kaiku").
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The percentage of the shot occupied by objects-of-interegt.g., in
Fig. 5(a), both rowing boats Il 6% of the view provided by CAM1).

Figure 5: Sample views, recreated using Google Earth, of tee cameras CAM1 (a),
CAM2 (b), CAM3 (c), and CAM3 after 4 seconds panning to the right (d)) covering a
rowing race.

If a certain camera is not currently viewing a target objectthe system can
obtain the rotation (pan, tilt, or both) and the time needed or the camera
to view it (see Section 4.2). For this purpose, the system roeto take
into account the current location, speed, and direction ofhe target object
and other objects in the scenario (because they could paittiaor fully hide
the target), and the features of the camera being considerémaximum pan
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and tilt allowed, and rotation speeds). Once the system estates the time
needed for a certain camera to view a target object, it will eate the state
of the scenario and obtain high-level features of the view dh the camera
would provide at that moment.

To illustrate the need of this time estimation and the rotatons that should
be performed to obtain a requested view, we present an examplLet us
suppose that the TD is interested in:cameras that can view the front, top,
and side of a certain object, at most in 20 seconds, sorted Ihe tpercentage
of the target viewed and the time needed to view ifising the location, speed,
and direction of the objects and cameras in the scenario, tegstem estimates
that CAM3 (that is not currently viewing the target, see Fig. 5(c)) wil need
to pan 35 degrees (to the right) during 4 seconds to view the Wku" boat.
The view that it would obtain at that moment will cover the front, top, and
side of \Kaiku" (see Fig. 5(d)), and so this camera ful lls the requirements
of the TD. Notice, that CAM1 also ful lls the requirements (see Fig. 5(a))
but CAM2 does not view the top of \Kaiku" (see Fig. 5(b)).

The time and rotations estimated for a camera to ful Il the view required
by the TD are high-level features obtained by the system. As ithe case
of the other high-level features, the time and rotations cabe used as con-
straints in the user query and as ranking criteria when presgng the answer
to the query.

4.1. Processing of the Camera Views

In this section, we explain how the system analyzes a cameliaw to ob-
tain high-level features. First, we show how the viewpointfdhe target that
the camera is capturing is obtained. Then, we describe howelpercentage
of the target object viewed by a camera is computed taking dasions into
account. Finally, we explain a combination of the two previes processes
that allows obtaining the percentage of a speci ¢ viewpoinbf an object that
a camera is providing. These are extended explanations o&tBD operations
that we brie y introduced in [31].

4.1.1. Kind of View Obtained of the Target Object

Being able to classify the video streams of the cameras aatiog to the
kind of view obtained enables the system to answer speci ayeests of the TD
(e.g.,cameras viewing the front, top and right side of a certain adgjf). As the
extent of the objects in the scene could be complex and we ndedperform
the calculations automatically and quickly (the 3D model othe scenario is
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updated in our tests every second), we propose the use of tigburces and
illumination to calculate the kind of view that a camera is poviding of an
object (see Algorithm 1).

Algorithm 1 Calculate the kind of view obtained of a target object
Input: target, cam, <views>
Output:  <visible views>

1. scenecrecreate cam's view in the 3D engine

2: remove all the illumination sources otcene

3. for each objectin the scenedo

4. if object== target then

5: paint objectwith re ective texture

6. else

7: paint objectin black (background color)

8. endif

9: end for

10: for each view in <views> do

11:  create light source inview's direction

12:  set light source's color to an unused one frorred; blue; green>
13: end for

14: projection=obtain 2D projection of the scene

15: for each pixel in projection do
16: if pixel's red, blue or greenchannelsé 0 then
17: settrue in <visible views> [i] if <views> [i] light source's color ==

pixel's color

18:  end if
19: end for

20: return <visible views>

The rst step is to recreate the view of the camera in the 3D enige (we
used in our prototype JMonkeyEngin€é) by setting the virtual camera with
the same location, direction, and Field of View (FOV) than the eal one.
Then, dierent colors are assigned to the target and other gbcts in the
scenario so when the scene is illuminated only the parts ofetharget object
that are not occluded by other objects will be visibleDirectional light sources

3http://jmonkeyengine.org/
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(which have no position {only a direction{, are considered ik nitely" far
away, and send out parallel beams of light) are used to illumate the parts
of the object that belong to each requested view using di en¢ colors for each
light source. In this way, the system checks several kindswaéws with a single
pass and e ciently decreases the number of renderings need@btaining a
rendering is one of the most time-consuming tasks). For exaie, to check
if the camera of Fig. 6(a) is viewing the top and rear of the baathe system
\selects" these parts of the object by using a red and a blueght source,
respectively (see Fig. 6(b)). Finally, the systems check&é color of each
pixel of the 2D projection of the 3D scene and if its equal to enof the colors
used for the light sources that means that the camera is vieng, at least,
some part of the target object belonging to the kind of view esidered.

(b)

Figure 6: A real camera shot of a rowing boat (a) and the recretion of the view in our
system with the top (red) and rear (blue) of the boat highlighted (b).

4.1.2. Percentage Viewed of the Target Object

Our system supports queries that ask for cameras that view artain
minimum percentage of an object. There exist two situationshere a camera
could have an incomplete view of an object: 1) when the target partially
or fully occluded by another object, and 2) when the target d&s not t the
FOV of the camera. Algorithm 2 calculates the percentage of arnget object
that a camera is viewing taking occlusions into account.

As in Algorithm 1, the system assigns di erent colors to the olgcts (red
for the target object and transparent green for the other olects in the sce-
nario), in order to show in the same rendering the hidden andsible parts of
the target (see Fig. 7(b)). Then, the current FOV is painted m transparent
blue to select what the camera is currently viewing (see Fig(c)). If the tar-
get does not t completely the FOV, the virtual camera is movedackwards
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Algorithm 2  Calculate the percentage viewed of a target object

Input: target; cam

Output: percentage viewed
1: scenesrecreate cam's view in the 3D engine

2. for each objectin the scenedo

3. if object== target then

4 paint objectin red

5 else

6 paint objectin transparent green

7. end if

8: end for

9: paint current FOV in transparent blue

10: while target does not t completely the FOV do
11:  move virtual camera backwards

12: end while

13: projection=obtain 2D projection of the scene
14: for each pixel in projection do

15 if pixel's red channel6 O then

16: increase #pixels of the target object

17:  end if

18: if pixel's red and blue channelsé 0 and greenchannel == 0 then
19: increase #pixels not occluded

20: end if

21: end for

# pixels not occluded
# pixels of the target object

22: return
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until it views the target object completely. This movement dows the sys-
tem to obtain a rendering covering the full object while it des not a ect the
perspective of the scene (see Fig. 7(d)). Finally, the systeobtains the total
number of pixels of the target (#pixels of the target object) and the pixels
of the target visible and not occluded (#pixels not occluded and computes

the percentage visible £ # pixels not occluded
P J # pixels of the target object

the image of Fig. 7(d), the system obtains that the camera wes 41% of the
target object (the second boat).

). For example, using

(@) (b)

() (d)

Figure 7: Computing the percentage of a target object in a shb scene in Google Earth
(a), selecting the target (b), painting the FOV (c), and covering the target completely (d).
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4.1.3. Percentage of a Part of the Target Object

For the TD, it could be interesting also to retrieve camerasigwing a per-
centage of a certain part (i.e., top/bottom, front/rear, left/right) of an object
(e.g., cameras viewing at least 50% of the front of the objectThe method
explained before needs an additional step to support thisrid of queries
(see Algorithm 3), to obtain rst which shot would cover 100% bthat target
viewpoint in order to calculate the actual percentage viewk In this way, the
system sets the virtual camera of the 3D engine in the direot of the target
viewpoint and at the same distance of the object than the realamera, and
counts the number of illuminated pixels (#pixels belonging to viewpoin).
This information will be used along with the number of pixelof the view-
point that the camera is viewing (#pixels viewed of viewpoint) to calculate
# pixels viewed of viewpoint
# pixels belonging to viewpoim)'
Notice that, if the target object did not t the FOV in Algorithm 3, the sys-
tem moves the virtual camera backwards a distanadto compute the total
amount of pixels visible for a shot that covers 100% of the tget view. In
this way, the system will move the camera backwards the saméstnced
before calculating the amount of pixels of the view that theamera covers.
The example of Fig. 6(b) shows a 2D image rendered by the systéor the
current view of a camera,where the system obtains that the gera views
95% of the top and 92% of the rear of the target object. Notice #t there
are di erent intensities of red and blue in the image used byhe system,
as depending on the normal of the corresponding polygon th&mination
method (Phongis used in JMonkeyEngine) makes it look darker or brighter.
This is not a problem for our system because it only counts s that have
a nonzero value for that speci c channel.

the percentage of the viewpoint viewed

4.2. Estimating Future Views Considering Object Trajectaes

It could be interesting for a TD to show information about careras that
are not currently viewing a target object. For example, it cold be useful to
estimate if a camera is going to be able to view the target if tated (and the
rotation and time needed, if so). One can think that answermnthis question
is easy; for example, if a camera has the object to its right é&m it should be
able to view it if rotated to the right). However, calculatingthis estimation
is not so easy when considering that objects in the scenaramd so also the
cameras that are attached to them, can move. In the previousample, if the
object keeps moving around the camera with a speed higher ththe rotation
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Algorithm 3 Calculate the number of visible pixels of the object in a shot
that covers 100% of the target viewpoint of the object
Input: target; view; cam
Output: pixels belonging to viewpoint; d
. recreatecam's view in the 3D engine
paint target with re ective texture
set virtual camera's direction toview's direction
create light source inview's direction
if target does not t completely the FOV then
d=move virtual camera backwards
end if
projection=obtain 2D projection of the scene
# pixels belonging to viewpointcount pixels in projection
return # pixels belonging to viewpoint d

©o NN R

=
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speed of the camera, the camera will never view the target ftated to the
right. Thus, in the following we present in detail our approah to estimate
the time and rotation needed by a camera to focus a target olgjeconsidering
that both objects and cameras can move.

FOV

(Xo; Yo)

.\ (Vs Vy)

(Vex; Vey)

(X Ye)

Figure 8: Initial state of a target object in ( Xo;Yo) and a camera in c;Yc)

On the one hand, we have to model the movement of the objectdhét
for simplicity can be represented here as points in the plad¢éheir center

23



of mass{) with a motion function depending on timeS(t) = ( x(t); y(t)) (see
Figure 4.2). For our scenario, we consider that the movemeot the objects is
linear, but the method presented in this section would work ith any analytic
functions x(t), y(t) (such as interpolation polynomials) or even with other
approaches to model the movement of objects (e.g., [32, 33Pp, the motion
function is:

S(t) = (Xo + Wt yo + wit)

where Ko; Yo) and (vy; vy) are the initial position and the speed vector of the
object, respectively.

On the other hand, a camera is modeled as a semiline (de ned Hye
bisector of its FOV) that can move and rotate (see Figure 4.2)The motion
function for a camera is the semiline formed by the values &f and Y of
the line C(t) (X Xc(t))sin( (1)) (Y ye(t))cos( (t)) =0, such that
sign(X  X¢(t)) = sign(sin( (t)), sign(Y  vyc(t)) = sign(cos( (t)), where
(Xc(1); ye(t)) is the translation motion function of the camera and (t) is the
rotation function.

Again, we consider that a camera has a linear translation motm with
a uniform angular speed. Therefore, the motion equations die semiline
representing a camera depending on time are:

(X (Xet+ Wet))sin(t ct+ o) (Y (Yot wt))cos( ct+ o)=0
sign(X  (Xc + Vyet)) = sign(sin(! ¢t + o)
sign(Y  (Ye+ Vyct)) = sign(cos( ¢t + o);

where (Kc;Yc) and (vxc; Vyc) are the initial position and the speed vector of
the camera, respectively! . is the pan speed of the camera, andy is the
initial pan of the camera.

We want to obtain the minimum time instant when the camera foases
the object, considering that the camera can rotate to the leside (a positive
pan speed) or to the right side (a negative pan speed). Thusgevhave to
obtain:

which pan speed (positive or negative) leads to a faster maowent to
focus the object,
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for that pan speed, the time instant when the camera and the gdxct
intersect.

In order to compute these values, rst we have to nd the solubn t; .
for the equation

E(t) = (Xo+ Wt (Xc+ Wel))sin(! ct+ o)
(Yo+ Wt (Ye+ VWyet))cos( ct+ ) =0

that holds

ti+ =minftjt, O,E(t,)=0;
sign(Xo + ety (Xc + Vyetr)) = sign(sin(! ¢t, +  o));
sign(yo + Wty (Yc+ Wetr)) = sign(cos( ct; + o))g
Second, we have to nd the solutiort; changing! . by ! in the above

equation. The minimum value off t; . ;ty g gives us the sign of the pan speed
and the time instant that we are looking for (see Figure 9).

¢ (Vex: Vey)
: (ch; ch) :

tr+

Fov \ (Vx;Vy) :

\ (V; W)

FOV

Figure 9: t; . (tf ) time to focus the target object rotating the camera to the left (right)
side.

The trajectories of the objects are estimated by using lineaxtrapolation
based on their speed vectors. The speed vector of an object@nputed by
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' id="Orio’

t=n

T id="Kaiku'
t=0

Figure 10: Estimation of trajectories and time needed to foas \Kaiku" from \Orio"

considering three previous reference locations of the ottj€n our prototype,
the locations of the objects during the last three seconds]o solve the above
equation we reduce the problem to nding the zeros of a polyngdal. We
use an approximation ofsin and cos using Taylor polynomials and solve
numerically the equation using Laguerre's method, a rootading algorithm
tailored to polynomials. As an example, Figure 10 shows thetisation
of the time needed to focus horizontally a target object by esidering the
movements of the objects, the current pan, and the pan speefitbe camera.

As we are dealing with a scenario where the objects can move i, 3ve
need to obtain the time needed to focus the target both horimtally (pan)
and vertically (tilt). As pan and tilt movements can be done inparallel, we
obtain the maximum of the time needed to pan and the time needdo tilt
and use that value as the time needed to focus the object. Sbgetequation
above is used for both movements using the horizontal planerfthe pan
(equation above) and the plane de ned by the trajectory of te object and
the z-axis for the tilt.

Once the estimation has been completed, the system genegatke scene
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to calculate if the requirements of the query (e.g., type ofiew, percentage
of the target object or part shown, etc.) would be satis ed. Ntice that, as

the objects are moving, when the camera is able to focus thegat it could

happen to be occluded by another object. Therefore, the tragtories of all
the objects have to be taken into account too, not only the tr@ctory of the

camera and the target object.

5. GUI: obtaining the user requirements and presenting the r esults

Inspired by mobile production units, we have developed a émdly GUI
that models the TD work environment (see Fig. 11 andhttp://sid.cps.
unizar.es/MultiCAMBA/ ) where the user can express his/her requirements
and the results are displayed [34]. The GUI is mainly composexd three
modules:

1. The query interface where the TD de nes (using HTML forms) the
requirements that the cameras have to ful Il and stores/lods/submits
his/her queries.

2. The overview map which is a 3D representation of the scenario, with
the moving objects and cameras involved, where the result$ the
gueries are shown.

3. The camera inputs which are several windows where the TD can pre-
view the camera video streams before broadcasting them.

The results obtained by the system (the cameras ful lling te TD require-
ments) are displayed in a tabular form in the query interfaceThe results can
be sorted according to any of the high-level features extriad (see Section 4).

Delivering the information easily and e ectively is essemdl to quickly
select the camera to broadcast in live. To achieve this goakwise a powerful
and free software tool, theGoogle Earth API, to display the results in a
friendly interface. Google Earth is a geographic informain system that
o ers a vast amount of geospatial data (satellite images, 3Duildings, 3D
terrains, etc.), that helps to develop virtual scenes sin@t to those in the
real world. Thanks to this, the overview map recreates and &ps up-to-date
the scene in a Google Earth plugin allowing the TD to navigatéhrough the
scenario. In the center of Fig. 11 the overview map shows anaexple of the
moving objects and cameras (a brown triangle indicates itsirent FOV) in a
sport scenario. Besides, it shows the results to a query suitted by the TD
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Query Interface Overview Map Camera Inputs

Area

| viewanObject | | View Any Object

| Camerasinarea | |  NewQuery

Query:1

Parameters:
TargetObject  RowingBoat_1
Cover: Any
View: Any

S Port-Island

3 Image/Ay lentoldelS ’
| swop | = [ W Sciectsreall Sove sceo W Snov aceas W Cieoc op I Show tiamesll_tice Fov_I tice Resuts | icam_YATCH 1_[-]

Figure 11: Graphical User Interface (GUI) for the Technical Director.

to retrieve the cameras that can view a certain object (a yeNv star is used
to represent the target object, a green hexagon for the canasrful lling the
requirements, a blue hexagon for the cameras that will ful them if rotated,
and a red hexagon for the cameras unable to ful Il them).

The system also uses Google Earth to recreate the view of a @am This
is very useful mainly in two situations: when the real camergideo stream
is not available (as in the camera inputs of Fig. 11) and when eamera is
not currently viewing the target and the system estimates tl scene it will
capture if it is rotated. The possibility to estimate future camera views with
the combined use of Google Earth technology allows the systdo show a
realistic recreation of what a camera will view if rotated. Tis is interesting
because sometimes the best shot is not the one that can be ob&al the
fastest. For example, a camera that is not currently viewing target, but
will be in a matter of seconds, could then provide a better bground scene
than a camera that is viewing the target currently, or could aver a greater
percentage of the target, as in the last sample query of Sexti 3.2 (notice
that in that sample query the system will show to the TD the image of
Fig. 5(d) as a preview of the future view).
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Once the cameras that obtain the view interesting for the TD @ dis-
played in the GUI, he/she has enough information to select theamera whose
view will be broadcasted. He/she could also request the caraavperator to
rotate cameras as suggested by the system. Notice that, withd informa-
tion provided by the system about the required turning (pantilt, or both)
needed by a camera to view a certain target object, it could b@ossible for
the system to automatically control the cameras to track a tayet and keep
it centered in the FOV, if ordered by the TD.

6. Experimental Evaluation

In this section, we show the experimental evaluation perfored to validate
our system. An experimental comparison of our system with o#n similar
approaches [4, 5] is not feasible because of the great diece on both the
use cases considered (soccer in [4, 5] vs. rowing boat ragesir system) and
the input data that the systems need (their systems use reaideos while ours
uses information about the location and direction of objestand cameras).
Therefore, we decided to focus the experiments on the evdioa of our
system in the rowing race scenario, considered as a use cas# explained
along the paper. More in detail, in this section we rst explan the prototype
of the system developed and how the simulation of a real rowgrace has
been carried out. Then, we show the experiments performed test: 1) the
quality of the result set, 2) the precision of the estimatediine to view an
object, 3) the precision of the estimated percentage vieweif an object,
and 4) the behavior of the system compared with real cameradiage’.

6.1. Prototype of the System

We developed a prototype of the system to perform an experimal eval-
uation of our approach (see Figure 12). Regarding the detsibf the imple-
mentation, this prototype has been developed as a Web ap@ton using
HTMLS5 because the latest Google Earth APl (we explained the imgrtance
of this technology for our system in Section 5) is based on &cript and
meant to be used in web pages. Then, the core of our system haeib de-
veloped as a Java Applet that has been integrated into the Welpalication.
We selected the Java programming language because for th@gessing of

4Some videos and interesting moments of the tests are availdd at http:/sid.cps.
unizar.es/MultiCAMBA/Experiments
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the camera views we are using a free and powerful Java 3D emgiddMon-
keyEngine (as we explained in Section 4.1). Both JMonkeyEimg and the
Google Earth plugins extract the 3D meshes of objects-oftémest from OBJ
(a geometry de nition format) les. Also, we are using a MySQLdatabase
to store the 3D model of the scenario and other interesting formation for
the tests.

NS

DB mysal
3D model of
the scenario

Web Interface

JavaScript

oe: Y = Google Earth @
‘ plugins

_LFTJ /7' JMonkeyEngine ;@E

3D meshes
of objects \ §
KML

Scenario

\ Applet ¢

Figure 12: Technical architecture diagram of the prototype of the system.

We need to enable the communication between the di erent thaologies
and the transfer of information among them. For example, fathe commu-
nication among the applet and the Google Earth plugins our ptotype uses
the Keyhole Markup Language (KMLY. For this task, the applet creates and

Shttps://developers.google.com/kml
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maintains updated a KML le with the current location, direction, and other
information of cameras and objects in the scenario, that athe Google Earth
plugins use to update the scene they show.

6.2. Simulating the Scenario

Testing a live broadcasting of a rowing race in a real-life emonment is
di cult because there are many real objects, devices, and de-area scenar-
ios involved. Besides, testing the system several times imdar situations
in a real-life environment is challenging. Therefore, we W@ developed a
simulator that enables us to manage the di erent cameras anabjects in the
scenario. To simulate the rowing race we have used a le comang the real
GPS location data of each rowing boat captured every secondrthg the race
celebrated in San Sebastian in September 2010; this rowirsge covers a total
distance of 3 miles logically divided in two parts by a turnig point. There-
fore, real trajectories are used to move objects in the simulations. Meover,
the simulator allows us to dynamically change other paramets, such as the
current pan and tilt of each camera, in order to rotate them athe TD would
request in the real scenario.
The parameters used in the tests are the following ones:

1. There are four rowing boats equipped with a camera; as coranted
before, these boats move according to the real GPS locatioatd cap-
tured during the race celebrated in San Sebastian in Septeeh2010.

2. There are three other cameras: one on top of the island, ooe the
promenade, and one on a sailing boat near the rowing boats. &h
cameras are set with horizontal focus,, = 70 , vertical focus , =
45, pan range 130, tilt range 90, and pan and tilt speed 5.5
degrees/second.

3. The tests were performed in an Intel Core i5-480M with gréycs card
NVIDIA Geforce GT 540M.

For the experimental evaluation we will consider this simaked scenario
and one of the most interesting queries for the TD. In our sangscenario, the
TD may want to know, during the whole event, which cameras areiewing
each of the rowing boats, as he/she could need a shot of a certhoat at
anytime. In fact, during the broadcasting of any event, the D would be
interested on the cameras that are viewing the main agents.ge, for a soccer
match it is interesting to know the cameras that are viewingach of the star
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players). So, as a representative query in the context of oexperiment we
will continuously process the following one:
\Cameras that can view at leas70% of the Kaiku boat"

6.3. Evaluating the Quality of the Result Set

In this rst experiment, we want to evaluate whether the cameas pro-
vided by the system as an answer are good candidates to pravithe views
required by the TD (see Fig. 13). We represent the number of weeras in the
answer (vertical axis) along the event duration (horizontaaxis). The blue
line shows the number of cameras provided by the system (soofeéhem cur-
rently ful lling the requirements of the user and the othersestimated by the
system to be able to do it in the near future) and the red dashdde shows
the number of wrongly chosen cameras. We consider a cameranaengly
chosen when the system makes an estimation error greater tha5 seconds
in the estimated time to wait until the camera could providedthe view re-
quired. For example, at the beginning the system estimatekdt the camera
on board the farthest boat (that has two boats between it andhe target
and does not currently view the target) will cover 77% of \Kaku" in 10 sec-
onds, but when those 10 seconds have passed the camera is ablg to
view 21% because then the occlusion of \Kaiku" is greater thaestimated.
This occlusion remains for 30 seconds, and so the system nsakemistake
considering this camera as part of the answer. These kinds efors only
happen when the target is occluded due to variations in the spd and direc-
tion of the objects that make the system fail in the estimatio of the future
scene. Again, around time 17:30, where the boats are in the Ingprint, the
system estimates the time needed to view the target and shoti®e cameras
in the answer, but some of them overtake \Kaiku" and thus theyare not
able to view it for the rest of the race (due to their rotation imits). How-
ever, thanks to the continuous query processing, estimaticerrors due to
unexpected changes in the trajectories are quickly correct.

For the test, the cameras are rotated automatically in ordeto track
\Kaiku" according to the results provided by the system. Themaximum
number of cameras that can be part of the answer is six (becauhe camera
of \Kaiku" cannot view itself due to the physical rotation limits), and the
system shows in the answer at least three cameras during thesh critical
time intervals, that is, when the boats are at the turning pant (which is a
key moment during the race) around time instant 10:30 and winethe other
boats are overtaking \Kaiku" around time instant 17:00-200.
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Figure 13: Quality of the result set (i.e., cameras ful lling the user requirements): number
of cameras in the answer set (blue line) and number of wronglghosen cameras (red dashed
line).

Even though the system must perform its calculations everyesond, the
results are quite satisfactory for the total period of twent minutes, and
the errors are corrected quickly enough to avoid a negativenpact on the
decisions of the TD. Notice that, in our scenario, for the mogpart of the
race a good number of cameras fulll the TD requirements, ashéy are
rotated automatically following the system commands. In tis case, the
system succeeds in discarding the irrelevant cameras at leasoment and in
ranking the most interesting cameras rst.

6.4. Testing the Precision of the Estimated Time to View

The goal of this test is to evaluate the error in the time esti@tion,
measured in seconds between the estimated time and the adttime when
the camera views the target.

In Fig. 14, we show the sum of the time errors for all the camesaat
every time instant. Notice that there are positive and negate values, that
represent when the time estimated by the system is greaterah the actual
value (positive) or when it is smaller (negative). We have d&ded to make
this distinction because a negative error could make the Tbtkeep an eye on
a camera that actually will need more time than expected to e the target,
which may be an important problem. On the other hand, a posie error (if
it is not too big) means that a camera viewed the target earli¢ghan expected,
and so the negative impact of selecting that camera is miniaed. Anyway,
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notice that the sum of all the errors ranges only between5 and +3 seconds,
which is very small for the sum of the errors of all the cameras
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Figure 14: Error in the estimated time needed for the camerado view the target object:
the error is localized at two speci ¢ time intervals (the start and the end of the race).

The errors are localized within two speci c time intervals.The rst errors
occur at the start of the race, when all the cameras are pointj at the same
direction as the front vector of their rowing boats. In this senario there
are not big changes on the objects' altitude (only slight chrages caused by
waves), so in order to test the pan and tilt estimation we havset initially
all the cameras pointing upwards at the start (maximum tilt. Thus, as the
test starts, the cameras have to pan and tilt to view \Kaiku" and the system
has to estimate the time needed to do it. As at the starting poirthe system
has not enough information to precisely estimate the speed&the boats, it
makes some little mistakes that, overall, do not exceed 3 sacls. Thus, this
error is small enough to provide the TD with accurate informi@gon. Around
time 17:30 the end of the race is near and there are big variatis in the
speed and distance between the boats (as the rowers are magkiheir last
e orts) and some boat is even overtaken. The system estimatdere that
the time needed to view \Kaiku" is smaller than the actual time needed, as
the boats increase their speed in a nal attempt to win the rae.

This test shows that the errors concerning the estimated tiemto view
the target are small. Besides, those errors are localizedtimo narrow time
intervals and they are quickly xed (in the test, in ten secods at most),
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since the corresponding location-dependent query is canibusly processed.

6.5. Testing the Precision of the Estimated Percentage Vied

We also tested the precision of the estimated percentage dfettarget
viewed by the cameras. Due to the speci c features of the segio, a camera
views a percentage below 100% when the target is partially aeded by
another boat (the target usually remains inside the FOV of ta cameras). As
explained before, the system is able to compute the percegeof \Kaiku"
that a camera will cover when it is able to view it. For the cam®@ closest to
\Kaiku" (that has no other boat between them), the errors in the estimation
of the percentage only occur when there is an error in the esttion of the
time needed to view it. We have considered these errors in Fitd. We show
in Fig. 15 an example for a camera that has two boats betweenand the
target (and thus occlusions are possible) and focusing onfrest time interval
(the rst 8 seconds) where some errors occur. The system dwestimating
that the camera will view a smaller percentage than what it Mlireally view,
and as the time goes by the error in this estimation decreases

Figure 15: Error in the estimated percentage of the target thrat a camera will view in the
rst eight seconds.

6.6. Testing the System Against Real Camera Footage

We have also tested the system against real camera footagpe8 cally,
we have used the video produced by the Spanish broadcasiTB for the
rowing race celebrated in September 2010. The goal of thisstewas to
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compare the results o ered by our system with the real eventotcheck the
behavior of our proposal. Fig. 16 shows an extract of two sewts of a camera
covering the end of the race (the real images are shown on thattom of each
frame) compared with the information generated and explat by the query
processing in our system (shown at the top of each frame). No#i that the

extents of the rowing boats are represented in green by thessgm, for an

easy comparison with the real footage. At the beginning of ik live footage,
the \Urdaibai" boat has just crossed the nish line (it is the only boat we

see in the rst frame in Fig. 16(a)); it is followed by \Kaiku", that enters the

FOV of the camera 1 second later, being completely capture¢f the camera
exactly at time instant 2.08 seconds (Fig. 16(b)).

(a) (b)

Figure 16: Testing the system against real camera footage lfie information generated by
our system is on the top): in two consecutive seconds.

At the time instant when the live footage begins, our systemséimates
that the camera will obtain a full view of the \Kaiku" boat in 1.85 seconds.
Notice that the error committed is not very signi cant: the TD will be
alerted just 0.23 seconds before the desired situation isptared by the real
camera. This small error is caused by the slight inaccuracy the GPS data
transmitted by the boats and the fact that the location of thereal camera
was estimated (the TV broadcaster did not provide us with trs information).
However, the results obtained by the system would have beenogbenough
to help the TD to select this camera to view the \Kaiku" boat.

7. Conclusions

In a live broadcasting, the higher the number of cameras alable, the
more di cult the selection of the camera whose view must be lmadcasted.
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So, in order to alleviate this task, we have developed a systdhat allows a
Technical Director (TD) to express his/her interests in spe ¢ camera views,
and obtains automatically a sorted set of cameras that coulgrovide such
views. The main features of our proposal are:

The system analyzes camera views in real-time by consideyia 3D
model of the scenario updated continuously with the infornten of
objects and cameras involved. Besides, it provides a goodfpemance
in scenarios where the target object is partially or totallyhidden by
other objects, as it takes occlusions into account.

The system obtains high-level features of a camera view, buas: the
speci ¢ objects viewed, the percentage of them covered, thercentage
of the shot lled by a specic object, the kind of view of the olject
obtained (e.g., front, top, side), etc.

The system generates location-dependent queries, using timforma-
tion provided by the TD, and continuously processes them tobbain
an accurate answer. In this way, our proposal supports hightlynamic
scenarios.

The system performs e ciently. The experimental results sbw the
feasibility of our proposal, that can be used for the realitie selection
of cameras. It executes a query in less than a half second.

The system provides a user-friendly GUI that allows the TD to asily
indicate the speci c view he/she is interested in and pres&sithe results
to the queries.

So, as long as the location of the objects-of-interest andmearas (and an
approximation of the extent of the objects) can be obtainecdireal-time, the
system presented can be applied to any context. In some sitioas it could
be challenging to obtain this information for certain objets; however, our
approach does not rely on a speci c technology nor require®@% precision
of these data to e ectively distinguish between cameras thare interesting
or not for a given query and to facilitate the selection of th&D by providing
a raking of the candidate cameras.

As future work, we plan to provide the system with the capabity to
manage knowledge related to cinematic shots and scenaribsthis way, TDs
could use technical language to communicate the view theyeanterested in
(e.g., a \high-angle shot" of the rst boat to cross the nishline).
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