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Abstract

It is widely accepted the increase need of organizations to manage data stored in dis-
tributed heterogeneous information sources. For this new situation flexible query answering
systems are required. In this paper we present the main features of a query answering com-
ponent defined for a multidatabase system. Queries can be formulated over an integrated
schema, defined using a system based on Description Logic, and their answers must be found
on the underlying databases. The query answering component provides new approaches for
semantic and caching optimization techniques and the opportunity of giving intensional as
well as extensional answers.

1 Introduction

The integration of heterogeneous and autonomous information sources is a requirement for the new
type of cooperative information systems. Multidatabase systems have been proposed as a solution
to work with different pre-existing autonomous databases. Federated database systems are a
special type of multidatabase systems where an integrated schema is provided. Three different
types of problems are involved when building a Federated Database System (FDBS): ¢ranslation
of the underlying database schemata into schemata expressed in a canonical model, ntegration
of the translated schemata into an integrated schema and gquery processing of the user-formulated
queries over the integrated schema by accessing the underlying databases. Although there has
been a lot of research about the problems of translation and integration of schemata to obtain
integrated ones, the problem of query processing against these integrated schemata has not been
treated so much.

There exist many different approaches for building a FDBS, namely the Entity-Relationship
model approach [?, 7], the Object-Oriented approach [?, 7], and the Knowledge Representation
Systems (KRS) approach [?, ?]. In our case we have built a FDBS that integrates several hetero-
geneous relational databases® by using a particular type of KRS based on Description Logics?(DL
system). The integrated schema is represented by a knowledge base built upon the different rela-
tional database schemata, and the extension of the knowledge base (the instances of the classes
and attribute values) is in fact in the underlying databases. Therefore, the answer for the queries
formulated over the integrated schema must be found in the underlying databases. In this context,

1 Although they all use the same data model, semantic heterogeneity still can remain.
2 Also known as Terminological Logics or based on KL-ONE [?, 7].



it is necessary to use optimization techniques in order to improve the performance of the query
processing task. DL systems provide interesting features for developing semantic and caching
query optimization techniques and also for providing niensional answers.

In the rest of the paper we present first an introduction to DL systems, then we introduce
briefly the work’s framework with the system architecture of our FDBS, the main features of the
mapping information and an example of one integrated schema. Finally we explain with more
detail the query processing aspects of our FDBS.

2 A brief introduction to DL systems

The family of DL systems has its origin on the semantic network research area, however they
concentrate more on the description of objects than on the representation of sentences. In our case,
we use a DL system for building a FDBS. The integrated schema will be represented as a hierarchy
of classes and attributes. Two types of class descriptions can appear in the hierarchy: primitive
classes that are phrased in terms of necessary conditions that the instances verify and defined
classes that express not only necessary conditions but also sufficient. The types of conditions are
value restrictions and cardinality restrictions over attributes and other classes. As in an object-
oriented system, every instance of a class has its own object identifier (OID).

For example:

The class person with attributes name, age and children can be expressed as a primitive class:

person < anything and exactly(l,name) and exactly(1,age)

meaning that any instance of person is an instance of anything® with one and only one value
for the attributes name and age.

The classes youth and parent can be expressed as defined classes in the following way:

youth == person and all(age,lt(30))

meaning that an instance of youth is an instance of person with age less than 30, and that any
person aged less than 30 is a youth,

parent := person and atleast(1,children)

meaning that parents are persons with at least one children and persons with at least one
children are parents.

Moreover, two important features in DL systems are the notions of subsumption and classi-
fication. Onme class subsumes another one if in all possible circumstances, any instance of the
second one must be in the first one. In a DL system, it is possible to know whether one class s
subsumed by another one simply by looking at the definition of the classes, without accessing to
the instances. The classification mechanism consists of discovering the subsumption relationships
between classes when a new class 1s declared, i.e., the new class is automatically located into the
hierarchy of classes, therefore classes viewed as composite descriptions, can be reasoned with and
are the source of inferences.

For example, if the following defined class teenager is described:

teenager := person and all(age,gt(14)) and all(age,lt(19))

meaning that teenagers are persons aged between 14 and 19 and nothing more, one could
reason that a teenager must be a youth although it has not said in its description. In fact a DL
system detects that youth subsumes teenager and therefore teenager is classified under youth in
the class hierarchy.

Furthermore, since a query is just a definition of the required properties to be satis-
fied by the instances listed in the answer, class descriptions can be used for information re-

® Anything is a special class such that any instance can belong to it.



trieval as queries [?]. The general form of a query has a part with projection of attributes
[rf(attributel),. . . rf(attributeN)] that may be empty, meaning that only OIDs are desired, and
another part that is the description of a class getall class_description, that is an intersection of
class names and cardinality and value restrictions of attributes.

For example, the query

[self,rf(name)] for getall person and all(age,le(17))

is asking for the instances and names of all the persons with age less or equal than 17.

Therefore the notion of subsumption between classes can also be used with queries: some
queries or classes subsume other queries or classes. For example, the class description of the
previous query is subsumed by the class youth. This feature is used to verify whether data are
cached or not when a query is formulated.

For the query processing task, DL systems provide some interesting features for developing
semantic and caching query optimization techniques and also for providing intensional answers as
it will be shown 1n section 4.

3 Work’s framework

Before focusing on the query processing we show the system architecture with its different com-
ponents and explain what the mapping information is. This is necessary to understand how the
Query Processor can answer the user queries over the integrated schema by accessing different
underlying relational databases. Moreover, we also present an example of an integrated schema
that will be used throughout section 4 to illustrate query processing aspects.

3.1 System Architecture

For the implementation of our FDBS we use the Client/Server approach in such a way that there
exists a Client application dealing with the knowledge base that represents the integrated schema
built upon the different relational databases and several Server applications, one for each database
that participates in the multidatabase system. This implementation allows for a parallel processing
over the different databases. Usually the Client and Server applications will be on geographically
dispersed nodes (however, this is not mandatory). In figure 1 the architecture of the FDBS is
shown.

In this architecture four main components can be distinguished: Translator, Integrator, Mon-
itor and Query Processor.

1. The Translator component produces a knowledge base schema from a conceptual schema (or
a subset of it, called exported schema) of a component database. The resultant knowledge
base schema will be semantically richer than the source schema, therefore this component
has to capture, with the Person Responsible for the Integration (PRI)’s help, semantics that
are not expressed explicitly.

2. The Integrator component produces a integrated schema by integrating a set of knowledge
base schemata previously obtained by the Translator component. During the integration
process a set of correspondences between data elements of the knowledge base schemata
that must be integrated will be defined by the PRI and new ones can also be deduced by
the system.

3. The Monitor component responds automatically, i.e., without user intervention, to design
changes made in the schema of a component database that affect the integrated schema



Figure 1: Architecture of the FDBS

[?]. This component is formed by three kind of processors: the Modifications Detector, the
Modifications Manager and the Consistency Re-establisher and by the System Consistency
Catalog.

4. The Query Processor component obtains the answer to the user formulated queries over the
integrated schema by accessing the databases. This component has two kind of modules:
the Global Query Processor and the Local Query Processor.

3.2 Mapping Information

The mapping information is the linking information that relates the DL objects in the integrated
schema (classes and attributes) with the relational objects in the underlying databases. This
mapping information has to be generated by the Translator and the Integrator components. A
formal definition of the mapping information is given in [?] but in a simplified way it can be stated
as follows:



e The mapping information of a class C is a pair <attr,rel> where rel is a derived relation
expressed in the extended relational algebra (ERA expression) and attr is some attribute of
rel. There is an instance with its own OID for each different value that the attribute/s attr
takes in the ERA expression rel.

For example. Let us suppose that there exists the table student(id,name,age). The
mapping information for the class student obtained from the previous relation could be
<ud,student> meaning that there exists an instance of the class student for each different
value that the attribute id takes in the table student.

e The mapping information of an attribute A is a triple <attr_inst,attr_attr,rel> where relis
also an ERA expression and atir_atir contains the different values that the attribute A takes
for each instance represented by attr_inst.

For example. Supposing now that there exist the tables student(id,name,age) and
has_child(idp,idc), an attribute children for the class student can be defined. The map-
ping information for the attribute children could be <idp,idc,has_child> meaning that the
different values taken by idc for the same value of idp are the children corresponding to the
student represented by that idp value.

3.3 Example of an integrated schema

Let us suppose that there are two very simple exported schemata, namely db7 and db2, from two
databases with information about teachers, students and their children.

| dbl | db2 |
student(id,name,age) | teacher(id,name,age)

has_child(idp,idc) has_child(idp,idc)

Figure 2: Simplified schemata

The Translator and the Integrator have obtained the primitive classes person, teacher and stu-
dent with attributes name, age and children. And also the defined classes youth, teaching_assistant,
parent and super_parent.

person < anything

student :< person

teacher :< person

youth := person and all(age,lt(30))
teaching_assistant := teacher and student
parent := person and atleast(!, children)
super_parent := person and atleast(5,children)

Figure 3: Integrated schema

The mapping information associated to some of these classes and attributes appears in the
next one:



CLASS <altr,rel>
PETSON <udp,dbl.student Uga) db2.1leacher>
youth <idp,0 age<so (dbl.student UGa) db2.teacher)>
teaching_assistant <udp,dbl.student Md)y db2.teacher>
super_parent <idp,0 newattr>s ((idp Feount(ide) (dbl.has_child Udap) db2.has_child)))>
ATTRIBUTE <altr_nst, atlr_atltr,rel>
children <udp,idc,dbl. has_child Ucdp) db2.has_child>

As it can be shown, the derived relations that appear in these mapping informations are
multidatabase ERA expressions because they contain aggregate functions (Feount()) and attributes
and relations are from different databases (i.e. dbl.student, db2.teacher).

4 Query Processing

In general, the query processing task is carried out with two different kinds of processors: the
Global Query processor and the Local Query processor. The subgoals of the former one are to
make a global query optimization; to decompose a query into subqueries that will run over different
databases and to generate an optimal plan to build the answer. The subgoals of the last one are
to make local optimizations; to find the answers for the subqueries; and last, to send the answers
to the Global Query process when is needed.

The different tasks made by the Global Query Processor are (see figure 4):

1. parsing of the query,

2. semantic optimization, that is, obtaining of the most immediate superclasses (MIS) for the
classes and restrictions that form the query. These MIS are used to detect inconsistent
queries, to transform the query and in some cases to give intensional answers;

3. identification of the cached parts of the query and answering of the query in the cache
memory, if it is possible. In other case, obtaining of a set of DL queries to be cached;

4. generation of an optimal plan to answer these non-cached DL queries from the underlying
databases.

The Local Query Processors have to receive the plans sent by the Global Query Processor in
its last task. In those plans it is explicitly said what to execute and where to send the answer.

4.1 Semantic optimization

In the database area, semantic query optimization methods exploit domain knowledge such as that
expressed by integrity constraints, hierarchies, etc. to detect inconsistent queries or to transform
a user formulated query into another one with the same answer, that is semantically equivalent,
but that can be processed more efficiently. These semantic optimization methods are external to
the database systems and are defined as a special purpose mechanism. Using a DL system, it
is possible to do semantic query optimization using the reasoning capabilities of these systems.
The classification mechanism allows for obtaining the most immediate superclasses (MIS) of the
class description of the query. The most immediate superclasses (MIS) of a class description C
are classes that subsume C and that are not subsumed among them, they are the most specific
subsumers of C. A detailed definition of MIS is given in the appendix.



4.1.1 Transformation or Detection

With these MIS, it is possible to detect if the query is inconsistent (when the special class nothing
is a MIS for the query) and it is also possible to reformulate the query by adding some MIS to the
query or by deleting some class from the class description of the query.

For example: for the query getall student and youth and all{age,35) the set of MIS is {nothing}
meaning that the query is inconsistent because any instance of youth has age less than 30 and
cannot be 35. This detection of inconsistent queries avoids searching the answer in the underlying
databases or in the cache memory because it 1s known that the answer is empty.

For example: for the query getall student and all(age,lt(30)) then the set of MIS is {student,
youth} (see appendix). Therefore youth is a class that can be used to answer the query instead of
the attribute restriction all(age,lt(30)).

Unfortunately, it is not always better to use the MIS to answer the queries. It depends whether
the MIS has a good mapping information associated to it or if it is cached.

In the last case, if youth were in the cache memory then it would be worth to use it instead of
all(age,lt(30)) but not in other case because the mapping information associated to youth (<idp,o
age<30 (dbl.student U(id) db2.teacher)>) tells that it is necessary to scan the relations student and
teacher in two different databases in order to retrieve all the youths, but only students have been

asked for.

4.1.2 Intensional answers

User queries are usually answered by giving the set of instances that satisfy the conditions in the
query. They are considered as extensional answers. However, when working with DL systems it is
also possible to give answers in terms of descriptions that satisfy the instances. In this case they
are considered as intensional answers. This can be done in two ways:

1. By giving the Most Specific Formulation (MSF) of the query, that is, the most immediate
superclasses of the query. For example:

Query: getall teacher and student and atleast(1,children)
Intensional answer (MSF): getall teaching_assistant and parent
2. By giving the Extended Query Formulation (EQF). This is possible by using the class defi-
nitions instead of class names.
For example:
Query: getall youth and super_parent
Intensional answer (EQF): getall person and all(age,lt(30)) and atleast(5, children)

This extended query formulation could be interesting for example for inconsistent queries in
order to know the reason for this.

Query: getall parent and atmost(0,children)
Intensional answer (MSF): getall nothing
Intensional answer (EQF): getall person and atleast(1,children) and atmost(0,children)



4.2 Cache optimization

When using a Client/Server architecture to implement a FDBS, it is worth having some data
cached in the extension of the knowledge base in order to avoid accessing the underlying databases
each time a user formulated a query. Communication cost involved in transferring intermediate
results among the nodes and the final reconstruction of the answer can be avoided. Using this
type of architecture to implement distributed database systems is relatively less costly than using
database machines or very expensive processors. This is particularly true now that workstations
are getting faster and cheaper. In [?] three different Client/Server architectures are compared
where there is a Server node with a shared database and several Client nodes that want to access
that shared database.
Unfortunately, it is not possible to have all the data cached for several reasons:

1. Due to the autonomy of the underlying relational databases, their extensions can be updated
so the cached data would become inconsistent very often. When this happens there are two
possibilities a) to reestablish the cache memory after every update, but in this case dynamic
relations would have to be continuously sent from the Server to the Client or b) not to
reestablish the cache memory after every update occurs but any time a query that affected
inconsistent cached data were made then it should be answered by accessing the underlying
databases, the cache memory would have useless data.

2. The size of the cache memory would be obviously huge because it would be the sum of the
size of several databases. This would produce space problems, most of the times it is not
possible to have such a huge cache memory and time response problems because frequently
asked queries could be answered slower if some not so frequently asked queries were cached.

When working with a DL system there are two different types of values associated with every
instance: the object identifier (OID), that is the unique value that identifies it, and the particular
values taken by its attributes. DL queries ask for OIDs or for attribute values. For example:

e getall person

It asks for the OIDs of the instances of the class person;

e getall person and atleast(2,children)

It asks for the OIDs of the instances of the class person that have at least two values for the
attribute children,

o [self,rf(age)] for getall person

It asks for the value of the attribute age for each instance of the class person.

In the first two previous queries the answer is a set of OIDs that correspond to the class
description. These identifiers do not usually give much information because, they are given auto-
matically by the system. In the third one the result of the query is the set of pairs <OID, value of
the attribute age>.

Therefore it is possible to cache the OIDs of the instances of a class description (hereafter to
cache a class description to which a class name is given) and to cache the attribute values for each
instance of a class description (hereafter to cache an attribute for a class).

For example, it is possible to cache the class description getall person and atleast(2,children)
instead of caching the entire class getall person. A new class name can be given to the cached



class description. And also it 1s possible to cache the attribute values for each instance of a class
description instead of for the entire class. For example, to cache [rf(name)] for getall person and
atleast(2,children) instead of caching [rf(name)] for getall person This is different from object-
oriented systems where entire classes have to be cached.

During the query processing task it is necessary to detect if the query can be answered with
the data stored in the cache memory, that is, if the query ¢s contained in the cache memory.
As database queries are descriptions of data, it has to be proved that any data that verifies the
description is in the cache.

For example, suppose that in the cache memory there i1s information about all the persons
older than 18 and the next query is made: obtain all the persons older than 30. This query may
be answered from the cache because all the persons older than 30 are older than 18 and therefore,
they are cached.

In general, to verify if a query is in the cache it 1s not easy and it depends on the query language
and on the representation of the cached data. And what is more, that verification should be as
fast as possible because much time cannot be spent to verify that finally the query is not cached.
When the query language is the relational algebra it is possible to create a graph structure with
all the cached views. To verify if a query is cached a matching process between the graph query
and the graph cache can be made to know if the query is contained in the cache. In [?] it is
proposed a structure call logical access path schema and an integration algorithm that could be
used to detect if a view i1s cached. Luckily, when working with a DL system, the classification
mechanism of classes can be used to verify if queries are cached. If a query class is subsumed by
the cached classes then it is true that the instances of the query class are in the cache. However,
that does not mean that they can be identified and that the query can be answered directly from
the cache.

For example, suppose that all the instances of the class person are cached and that the
next query is made: obtain all the persons with at least five children (getall person and
atleast(s,children)). In fact, it is true that all the instances of person and atleast(5,children)
are in the cache because all the instances of person are cached. However it is not possible to an-
swer the query unless the attribute children is also cached because it is not possible to distinguish
which persons have at least 5 children if the children are not known (another possibility would be
that the class person and atleast(5,children) were cached).

We can say that the query [rf(r ),....7f(rn )] for getall Cy and ... and Cy is cached if all the
class names that appear in C; and all the attributes that appear in C; and r1,...ry are cached.
But this is a too strong restriction because although two classes were not cached, the intersection
of both could be cached and the same query would be also cached. In fact, a query 1s cached if the
MIS of the class description of the query C) and ... and Cyr are cached and also the projected
attributes r,.. ., ry.

For example, suppose that in the previous integrated schema, only the classes teaching_assistant
and parent are cached and that the attribute name is cached for both classes.

If the query [rf(name)] for getall student and teacher and atleast(1,children} is formulated,
it must be verified that it is cached because although neither student nor teacher nor children
are cached, the MIS of the class description, teaching_assistant and parent, are cached and the
projected attribute name 1s also cached for them.

It is obvious that if the query is cached then it 1s answered from the cache memory, but if the
query is not completely cached then it has to be answered by accessing the underlying databases.
However not all the class names and attributes have to be retrieved from the databases because
part of the query may be already cached.

For example, suppose that now only the class parent is cached and that the attribute name is



also cached for parent. When the next query is formulated
[rf(name)] for getall student and teacher and atleast(3,children)
then it is verified that the query is not cached because not all the MIS are cached.
MIS = {teaching_assistant, parent, atleast(3,children)}
neither teaching_assistant nor children are cached.
At this point there are several possibilities of queries to cache. Some of them are the following
ones:

e to cache the whole query;

[rf(name)] for getall student and teacher and atleast(3,children)
It will be more complex to execute this query in the underlying databases but the answer
will be the smallest possible one. After that, a future query like getall student will not be
able to be answered from the cache.

e to cache the classes student and teacher and their attribute children;
[Tf(children)] for getall student
and frf(children)] for getall teacher

These two queries will occupy more in the cache so more communication cost will be in-

volved. However, these queries can be independently executed in both database nodes. As

an advantage a future query like getall student will be able to be answered from the cache.
e to cache the class teaching_assistant and its attribute children;

[rf(children)] for getall teaching_assistant

This 1s an intermediate solution where more space in the cache is needed than in the first

case but less than the second one. Of course, there are some other intermediate possibilities.

After the cache optimization, a set of DL queries to be cached is obtained in order to answer
the user query. That set of queries is obtained depending on the space left in the cache and
other criteria like probabilities of asking the queries, probabilities of updates in cached queries
and response times in the underlying databases.

4.3 Generation of a plan to answer from the underlying databases.

Each one of the DL queries to be cached obtained in the cache optimization step has to be retrieved
by accessing the underlying databases. For each DL query two are the steps to be executed:

e translation of the DL query into a multidatabase ERA expression. This is possible because
there exists a mapping information associated to any class and attribute of the knowledge
base schema. Furthermore, the mapping information for any class description can be ex-
pressed in terms of the mapping information of their class names and attributes ([?]).

For example:

Query: getall teaching_assistant and atleast(3,children)

Mapping for teaching_assistant: <idp,dbl.student Nia) db2.teacher>
Mapping for children: <idp,idc,dbl.has_child Ugap) db2.has_child>
The mapping for the query would be:

<2dp,0' new_attr>3 (ﬁdp f(‘,mmt(idc) (db]student m(id) db2.teacher m(idp:idc) (db]has_chzld
Uidp,ide) db2.has_child))))>
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e translation of a multidatabase ERA expression into a set of SQL sentences. For each SQL
sentence it has to be said: a) in which node to execute the SQL sentence, b) where to
send the answer and c) the prerequisites needed to execute it (if it has to wait for other
intermediate results to be sent). Many of the techniques studied about query processing in
distributed database systems can be applied in this last point such as optimal execution of
joins, use of semi-joins, selection of the nodes where intermediate results must be sent, etc.
(12, 7).

For example, a set of SQL sentences to execute the previous query would be:

Execute in the node of db7 the next SQL sentence:

select idp, idc
from student, has_child
where id=idp

and send the result (called X) to the node of db2.
Execute in the node of db2 the next SQL sentences:

create view Y as
select idp, idc
from teacher, has_child, X
where teacher.idp=X.idp
union
select idp,idc
from X, teacher
where X.idp=teacher.idp

select idp

from Y

group by idp

having count(idc) >= 3

and send the result to the Client node to load the answer in the cache. Notice that the SQL
sentences to be executed in the node of db2 have to wait for the intermediate result X to arrive (X
is a prerequisite for the SQL sentence to execute in db2node). And also notice that this is one of
the strategies because it could also be possible to execute the join first in the db2 node, send the
result to dbl node and then to execute the final join. In this case, it has been supposed that the
join between student and has_child has a lower selectivity and therefore the result is smaller than
the other one.

5 Conclusions

The integration of heterogeneous and autonomous information sources is a requirement for the
new type of cooperative information systems. Multidatabase systems have been proposed as a
solution to work with different pre-existing autonomous databases because they allow users to
query different autonomous databases with a single request.

Although there has been a lot of research about the problems of translation and integration
of schemata to obtain integrated ones, the problem of query processing has not been treated so
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much. We have built a FDBS that integrates several heterogeneous relational databases by using
a DL system. DL systems provide interesting features for developing semantic and caching query
optimization techniques and also for providing intensional answers.
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Appendix: the Most Immediate Superclasses

Let 7 be the set of classes that form the schema 7 = {T},....Tp }, Q the set of classes that
form the query class @ = {D;,.. ., Dy} then the set of inmediate superclasses corresponding to
the query MZS is:

MIS ={C|(CeTVCe€Q)A(C subsumes (Dy and ... and Dy ))

NVE(E € MISANE # C — E does not subsume C'))

This set of inmediate superclasses MIS = {C},...,Cx} verifies:

1. Vi((C; € T) V (C; € Q)

Every inmediate superclass of the knowledge base is in the query.

2. ViVj (i # j — C; does not subsume Cj)

There 1s no an inmediate superclass that subsumes another one.

3.VC[(CeTvCeQ) —
(C subsumes (D and ... and Dy ) — ((C € MIS) V(IE(E € MIS A (E subsumes
)]

Every class of the knowledge base or included in the query that subsumes the query class is an
inmediate superclass except if there 1s already another inmediate superclass that subsumes
it.

4. The query class is semantically equivalent to the intersection of all the inmediate superclasses.

Dy and ... and Dy 1s semantically equivalent to C and ... and Cy

Demonstration:

e (' and ... and Cy subsumes Dy and ... and Dy
Yi(C; € MZS) =
Vi(C; subsumes Dy and ... and Dyr) =
Vi (Dy and ... and Dy C C;) =
Dy and ... and Dy CCq and ... and Cy =
Cy and ... and Cy subsumes Dy and ... and Dy

o Dy and ... and Dy subsumes C; and ... and Cy
By reductio ad absurdum:
Suppose that Dy and ... and Dy; does not subsume C; and ... and Cy =
Crand ...and Cny € Dy and ... and Dy =
F(C; € Dy and ... and Dyr) =
3i(C; does not subsume Dy and ... and Dyr) # because C; € MIS

For example, in the integrated schema of section 3.3, the set of MIS for the query getall
student and all{age,lt(30)) is {student, youth} because 1) student and youth belong to the schema;
2) student does not subsume young and vice verse; and 3) the set of subsumers of student and
youth is {person, student, youth, all(age,{t(30))}. The only two subsumers that do not belong to
MIS, namely person and all(age,lt(30)), subsume youth.
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Figure 4: Global Query Processor.
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