An Agent-based Approach for Helping Users of
Hand-Held Devices to Browse Software
Catalogs*

E. Mena', J.A. Royo'**, A. Illarramendi?, and A. Goiii2

1 1IS Depart., Univ. of Zaragoza, Maria de Luna 3, 50018 Zaragoza, Spain
{emena, joalroyo}@posta.unizar.es
2 LSI Depart., Univ. of the Basque Country, Apdo. 649, 20080 San Sebastiin, Spain
{jipileca,alfredo}@si.ehu.es
WWW home page: http://siul02.si.ehu.es/

Abstract. Considering the existing tendency toward the use of wireless
devices we propose in this paper a new service that helps users of those
devices in the (tedious, repetitive and many times costly in terms of
communication cost) task of obtaining software from the Web.

The goal of the service is twofold: First, to allow users to obtain software
by expressing their requirements at a semantic level. For that the service
deals with an ontology, specifically created for the service, that contains
a semantic description of the software available at different repositories.
Second, to guide users in the task of browsing the ontology in order to
select the adequate software.

The service has been developed using mobile agent technology. A soft-
ware obtaining process based on adaptive agents, that manage semantic
descriptions of available software, presents a qualitative advance with re-
spect to existing solutions where users must know the location and access
method of various remote software repositories. In this paper we describe
the main elements that take part of the service and some performance
results that prove the feasibility of the proposal.

Keywords: Mobile information agents, Ontologies, Adaptive informa-
tion agents, Mobile computing.

1 Introduction

Working with any kind of computer (desktop, laptop, palmtop), one of the most
frequent task for the users is to obtain new software in order to improve the
capabilities of those computers. For that, a well-known solution is visiting some
of the several websites that contain freeware, shareware and demos (such as
Tucows [12] or CNET Download.com [1]). However, that approach can become
cumbersome for naive users —they may not know: 1) the different programs

* Supported by the CICYT project TIC2001-0660 and the DGA project P084/2001.
** Work supported by the grant B131/2002 of the Aragén Government and the Euro-
pean Social Fund.

that fulfil their needs, 2) the features of their computers, and, 3) the websites
where to find the software— and can become annoying for many advanced users.
Moreover, if those users use a wireless device, the time expended to find, retrieve
and install the software should be minimized as much as possible in order to
reduce communication cost and power consumed.

Taking into account the previous scenario we propose in this paper a Soft-
ware Retrieval Service that allows users to find, retrieve and install software.
This service presents two main features: 1) Semantic Search: the service allows
users to express their software requirements at a semantic level and helps them
to browse customized software catalogs in order to select the adequate soft-
ware. For that, the service makes use of an ontology (specifically created for the
service) that contains a semantic description of software available in different
repositories, and so it makes transparent for users most of the technical details
related to the software retrieval task. 2) Analysis of user behavior: the system
“observes” users information requests in order to anticipate their needs and even
learns from its mistakes to improve its future behavior with those users. So it
offers a customized and adaptable service to users putting a special emphasis on
optimizing communication time.

The Software Retrieval Service takes part of ANTARCTICA [3], a system
that provides users of wireless devices with a new environment that fulfils some
of their data management needs. ANTARCTICA follows the widely accepted
architecture for mobile computing [11] and so it deals with users of wireless
devices and hosts situated at the fixed network that we call GSNs'.

The implementation of the service is based on the agent technology [10].
Four main agents participate in the service (see Figure 1): Alfred, the user agent
situated at the user computer who is an efficient majordomo that serves the user
and is on charge of storing as much information about the user computer and
the user her/himself as possible; the Software Manager agent (situated at the
closest GSN?) that prunes the software ontology taking into account the user
requirements; the Browser agent, which is created at the GSN and then it moves
to the user computer to help her/him to navigate the pruned ontology and select
the wanted software; new information requested by the user will be retrieved by
the Catalog Updater agent, which is created by the Browser to update the user
software catalog; and the Salesman agent which carries the selected program
to the user computer and installs it whenever possible. The interactions among
these agents are explained in detail in [6].

Two main tasks take part when dealing with the service: 1) to prune the
ontology in order to present to the user a software catalog containing only that
part related to her/his requirements (to avoid confusing the user and overloading
her/his computer), and 2) to attend user refinements on such a catalog trying
to predict future user behavior (to minimize network communication). The re-

! The Gateway Support Node (GSN) is the proxy that provides wireless users with
different services like the Software Retrieval Service.
2 There exists one Software Manager agent on each GSN.

GATEWAY SUPPORT NODE (GSN)

SOFTWARE PLACE
Software Manager

i ;
|

© %V Static agent |

| |

o ! T

| % Mobile agent |

S |

| = Creation

I
! ——= Communication|
| ---=> Travel

”””””””””” USER COMPUTER

Fig. 1. Main architecture for the Software Retrieval Service

sponsible for those tasks are the Software Manager and the Browser agents,
respectively.

Concerning related work, to our knowledge, agents have not been widely used
for software retrieval. In [4] they explain a mechanism to update several remote
clients connected to a server taking advantage of mobile agents capability to
deal with disconnections; however this work is more related to push technology
than to services created to assist users in the task of updating the software on
their computers. In the Ariadne project [5] they work on automatic wrapper
construction techniques and build an ontology on top of each website in a semi-
automatic manner. OntoAgents [2] allows the annotation of websites to perform
a semantic search; data can be accessed using a web browser or performing a
search that is managed by agents, which consider the different terms in the
website. In these last two projects they use agents, not for retrieving software
but accessing websites.

In the rest of the paper we detail the behavior, knowledge and adaptability of
the Software Manager and Browser agents, which are the key of the success of the
Software Retrieval Service. In Section 2 we explain how the initial interaction of
the user with Alfred is performed. In Section 3 we describe how the first pruned
ontology (the first catalog) is obtained. In Section 4 the catalog browsing is
detailed including the analysis of the user behavior. We compare the software
retrieval service with a Tucows-like approach in Section 5, and some conclusions
appear in Section 6.

2 Initialization of the Software Retrieval Service (SRS)

Alfred is an efficient majordomo agent, situated at the user computer, that
serves the user and is on charge of storing as much information about the user

computer, and the user her/himself, as possible. Let us start with the situation
in which the user wants to retrieve some kind of software. Two cases can arise:

1. The user exactly knows which program s/he needs, for example, JDK1.4.0
for Win32, and also knows how to ask for it. This can happen because s/he
is a usual client of this service. Thus, expert users could directly pose the
request, with the help of a GUI, as a list of constraints <feature, value>
describing the software they need. In the example the data entered would
be [<name, JDK1.4.0>, <OS, Win32> |.

2. The user only knows some feature of the program, for example, its purpose.
In this case, the user needs some kind of catalog concerning the software
available, in order to navigate it and find the wanted program. With the
help of a GUI, users can write a list of constraints in order to express their
needs the best they can®. Moreover, the user can specify the level of detail
(expressed as a percentage) that s/he wants in such a catalog, the more detail
the bigger catalog. Advanced users could be interested in many features of
software while naive users could only be interested in just a few, such as a
brief description, the name of the program and the OS needed to install it.

K " Software Retrieval Service :
Feature: [Any w | wvalue:

Keywords: < Any , Web Browser = < 05 |, Windows =

L L 1

[Vl Level of detail: o5 | %

0% 25% §0% 75% 100%

Retrieve || Cancel |

Fig. 2. Alfred’s GUI for the Software Retrieval Service

It is also possible that the user does not know any feature of the software.
S/he could have seen it in the past but now is not able to remember the
name, the exact purpose, etc. However, if s/he would see it again s/he could
recognize it. Even in this case, the system will help the user as we explain
in Section 3.1.

In addition to the constraints and the level of detail (if specified) Alfred
can add more constraints concerning the user computer (e.g. OS, RAM mem-
ory, video card, etc.) and previous executions of the service (e.g. previous web
browsers downloaded). Indeed, all the information provided by the user is stored
by Alfred. Thus, with each user request, Alfred stores more information about

% The information provided can be imprecise. In Figure 2, the user does not know
neither the web browser name nor the concrete Windows version of her/his computer.

the user computer and about the user; a detailed description of the knowledge
managed by Alfred can be found in [6].

After the user specifies her/his requirements, Alfred sends a software catalog
request to the Software Manager agent residing at the GSN.

3 Obtaining a Software Catalog: The Software Ontology
and the Software Manager

After receiving a request of Alfred (on behalf of the user), the Software Manager
agent performs two main tasks: 1) To obtain a catalog corresponding to the user
request, and 2) To create an agent that travels to the user computer, presents
the catalog to the user, and helps her/him to find the wanted software.

For the first task, we advocate using an ontology, called SoftOnt, to describe
semantically the content of a set of data sources storing pieces of software. This
ontology will be stored in all the GSNs that belong to the ANTARCTICA sys-
tem. The SoftOnt ontology, which stores detailed information concerning the
available software accessible from the GSN, is managed by the Software Man-
ager (one per GSN). So, instead of users having to deal directly with different
software repositories, the system uses an ontology to help users to retrieve soft-
ware. Structurally, SoftOnt is a rooted acyclic digraph whose inner nodes store
information about software categories and whose leaves store information about
programs.

In [7] we explained the process used for building the SoftOnt ontology. How-
ever, due to space limitations we summarize here the main steps involved in
that process: the translation and the integration steps. In the translation step,
specialized agents analyze HTML pages corresponding to several software repos-
itories on the web, like Tucows [12]. Fortunately, those pages classify the different
pieces of software in several categories and so, the specialized agents take ad-
vantage of those categories to create ontologies (one ontology per website) and
they transform subcategories in websites into specializations in ontologies. In the
integration step, the ontologies obtained from the different software repositories
are integrated into only one ontology. Taking into account that in the consid-
ered context (software repositories) the number of data sources is low and the
number of categories is not very high we advocate building only one ontology.
Moreover, as the vocabulary heterogeneity problem on the context is limited,
the process of integrating the ontologies can be automatized using a thesaurus
for the automatic vocabulary problem resolution.

Therefore, the SoftOnt ontology constitutes the main knowledge managed by
the Software Manager agent and the pruned ontology (customized to each user)
constitutes the main knowledge managed by the Browser agent.

3.1 The Software Manager: Ontology Pruning

The SoftOnt ontology must be pruned in order to obtain a first software catalog
to present to the user. This pruning process is very important due to three rea-
sons: 1) it avoids presenting the user categories and pieces of software that cannot

be installed on the user computer (different OS, or other restrictions); 2) it avoids
presenting very specialized categories and pieces of software that could surely
make naive users spend more time reading the catalog, and consequently, find-
ing the wanted software; and 3) it minimizes the communication cost by sending
interesting information only.

The Software Manager is able to prune an ontology by considering different
parameters:

— Node to prune. The Software Manager will only consider the subtree de-
fined by the specified node and their underlying nodes. To prune the whole
ontology, the node to prune should be the root node of the ontology.

— Keywords. They are a list of constraints <feature, value> that nodes in the
result must satisfy.

— Level of detail. Tt is a percentage that indicates the amount of data that
should be included in the result; for example, a level of detail of 30% indi-
cates that only the 30% of the ontology should be included in the result.
If keywords are specified, the level of detail is applied on the set of nodes
satisfying the keywords.

— Pruning strategy. It indicates which nodes of the ontology will be selected,
it is the selection criteria. Several pruning strategies have been implemented
in our prototype:

o The most requested nodes. The Software Manager updates global* statis-
tics about the retrieval of each node in SoftOnt. Every time that a node
is included in the catalog for some user, its count is increased. Thus,
when this strategy is used, the most requested nodes are selected first.

e The most requested nodes by the user. The Software Manager also stores
which nodes are sent to each user (user statistics). Thus, by using this
strategy the Software Manager selects first those nodes requested for the
user in the past.

o The proportional strategy. In this strategy, brother nodes® have the same
priority. In other words, when a node must be pruned using a certain
level of detail of n%, then all the immediate descendants of such a node
will be pruned using a level of detail of n%. This strategy is very useful
when the system has no idea of what the user is looking for, as it does
not favour any concrete branch.

o The heaviest strategy. In this strategy, the nodes with more underlying
pieces of software are selected first. This strategy is based on the idea that
the user could be looking for a software under very populated categories,
like games.

— Node type. The pruning strategy could consider only nodes that represent
software categories, nodes that represent pieces of software, or both. Thus,
the node type parameter can be ‘categories’, ‘programs’, or ‘nodes’, respec-
tively.

* Once a day, Software Managers on different GSNs can share and update their sta-
tistical information about the retrieval of each node in SoftOnt.
5 Brother nodes are those with at least one common father node.

(a) 29 nodes
9 categories
20 programs

O Category

D Program

(b) 9nodes 30% (c) 9nodes
4 categories 0 8 categories
5 programs 1 programs

(H)33% 179%(1)

Fig. 3. Pruning an ontology: (b) with heaviest and (c) proportional strategies

Figure 3 shows the difference between two pruning strategies, when the node
to pruneis ‘A’, no keywords, level of detail is 30% and node type is ‘nodes’. Notice
that, independently of the pruning strategy, a level of detail of 30% indicates
that only the 30% of the ontology must be obtained (9 nodes, in the example).

In the initialization of the service, the parameters sent by Alfred are: the
level of detail for the whole ontology and some keywords; both parameters are
optional for the first time. For future catalog refinements, the parameters sent by
Alfred are: the node to prune, the level of detail for that node, and (optionally)
new keywords. The rest of parameters are estimated by the Software Manager
as explained in the following. Therefore, when the Software Manager is invoked
to perform a prune of the SoftOnt ontology, the following steps are followed:

1. Selecting the node to prune. For the first catalog it will be the root node of
SoftOnt, as the first time we consider the whole ontology. In future catalog
updates, the user can request pruning a concrete node (see Section 4.1).

2. Choosing the node type. If no keyword and no level of detail was specified
by the user, only categories will be included in the first catalog: the user
has provided no information about what s/he wants, therefore the system
will only include categories in the first catalog to help the user to choose
first the kind of software wanted. In other case, the catalog will include both
categories and program nodes.

3. Pruning the SoftOnt ontology using keywords, if any was specified by the
user (pruning using keywords is very selective). Let us call Ontgeywords t0
the ontology after considering the keywords:

prune(SoftOnt, keywords) if any keyword

Ontkeywards = {SoftOnt otherwise

Only nodes of the kind selected in step 2 which fulfill all the keywords will
be included in the result.

4. Setting the level of detail. If the user specified a level of detail, the system
must provide her/him with at least such a level of detail. However, as a
remote connection must be opened to return to the user computer the cat-
alog requested, system estimates if it is worth to retrieve more information
than what it has been requested, i.e., to consider a higher level of detail to
avoid future network connections. This estimation is based on the current
network status and a concrete percentage %iner specified by Alfred (dif-
ferent users could have different increments depending on their expertise,
computer, network connection, etc.). Technical details about how this incre-
ment is obtained in run-time can be found in [9]. This approach improves
the efficiency of the system when the user successively requests lightly higher
level of detail of the some node.

If the user did not specify a level of detail (only possible for the first software
catalog), the Software Manager will consider a level of detail of %y

5. Applying a pruning strategy on Ontieywords, using the parameters obtained
in the previous steps. For the first catalog, the proportional pruning strat-
egy is selected, because it prunes brother nodes proportionally, which is a
good idea for the first catalog. In future catalog updates, the system will
automatically select the most suitable strategy (see Section 4.2). Let us call
Ontpruned to the result of this task.

6. Obtaining an incremental answer. The first catalog will be the complete
Ontpruned- Moreover, to avoid sending data that are already on the user
computer, the Software Manager stores the ids of the nodes sent to each
user® (nodesyser;) and, in future catalog updates, it removes those nodes
from the catalog obtained. Thus, only the new information is sent.

7. Compressing the catalog obtained. The information obtained in the previous
step can be compressed to reduce the use of the network when sending a
catalog to the user computer. In [9] we show when it is worth to compress
the catalog by considering the catalog size, the current network status and
other parameters measured in run-time.

Notice that, even when the user did not specify any keyword or level of detail,
the system automatically sets during steps 1, 2, 4, and 5 the most appropriate
values for the parameters needed to perform a prune (node to prune, node type,
level of detail, and pruning strategy).

3.2 Creating the Browser agent

After the first catalog is obtained the Software Manager creates a Browser agent
initialized with such a catalog. This specialized agent will travel to the user
computer and help the user to find the wanted software as explained in the next
section. It is important to stress that, although the Software Manager could have

6 This information is also stored by the Browser agent at the user computer, thus
when the user changes to another GSN (handoff) the Browser tells the new Software
Manager which are the nodes already retrieved.

selected a level of detail higher than the specified by the user, the Browser will
exactly show to the user what s/he asked for. The rest of the information can be
used by the Browser as a buffer to perform future catalog updates, as explained
in Section 4.3.

4 Catalog Browsing: The Browser Agent

Once on the user computer, the Browser agent presents the catalog as a rooted
acyclic digraph (see Figure 4) where nodes are software categories (shaded nodes
represent nodes whose descendants are hidden). In order to help users, under
each node in the catalog there is a bar that represents graphically: 1) how much
information about that node is shown (in middle grey); 2) how much information
about that node is available at the user computer (in light grey); and 3) how
much new information about that node could be requested to the Software Man-
ager (in dark grey). For example, concerning the node ‘Linux’ in Figure 4, the
Browser is showing the 10% of all the information available in the ontology, the
58% is available at the user computer, and the 42% remaining could be remotely
requested to the Software Manager.

rowsers
Web SufACE

PolyWeb
Opera
Netscape Navigator 128-bit
Netscape Navigator
Netssaps Communicator
[=m |
il This i a version of Netscape that -

fiers you high-security features, so

or
laccount rumbers over the Inter net
ifwithout the worry of others sesing your |~

il notPrune Descendants: 0
Pruning: Propertional prunning ha
ifalso: Under US. law, TUCOWS cqg
il home_page: hitp:Hwww.
ilversion: 4.08

revision: November 10, 1998
name: Netscape Navigator 128-bi
illicense: Freeware

05 Windows 9x

DOWNLOAD NOW!

Fig. 4. Browsing the catalog

In the following we explain the different actions that the user can perform
on the catalog, how the Browser analizes the user behavior to anticipate future
actions, and how the catalog refinements that request new information about
some node are managed.

4.1 Navigating the Catalog: User Actions

The following are the different actions that a user can perform after studying
the catalog presented:

— To ask for information about a node. Just by left-clicking on a node, the
Browser shows (on the right side of the GUI) all the features of such a node,
including the list of programs under it.

— To open/close a node. By double clicking on a node, its immediate descen-
dants are shown/hidden.

— To prune some node. By right-clicking on a node, the user has the possibility
to specify a new level of detail for that node or provide new constraints for
that node and its descendants. Thus, different actions can be performed:

e To request less detail of a node, when too many descendants below that
node are shown, which makes the task of finding the wanted software
too confusing for naive users.

o To request more detail of a node, as the user could suspect that the
wanted program could be under such a node. The Browser could have
the requested information (no remote communication would be needed)
or not (the Browser will have to remotely request those data to the
Software Manager at the GSN). Sections 4.3 and 4.4 detail this task.

e To provide new constraints, as the user could have remembered some
feature of the wanted program therefore could want to provide a new
constraint (a new pair <feature, value>). As the Browser has pruning
capabilities, that task can be done locally”, on the user node, without
any remote connection.

— To download a program, when user has (fortunately) found a piece of soft-
ware that fulfils her/his needs. As a consequence of this action the Browser
remotely creates a Salesman agent on the GSN and the Browser agent simply
ends its execution. The Salesman agent will visit the user computer carrying
the specified program. See [8] for a more detailed description of the tasks
performed by the Salesman.

4.2 Automatic Pruning Strategy Selection: Analyzing the User
Behavior

We explained in Section 3 that catalogs can be pruned in different ways, what
we call different pruning strategies. Thus the pruning strategy indicates which
nodes of the ontology will be selected. The result of applying different pruning
strategies is different although the same number of nodes is selected. Therefore,
different pruning strategies select first certain kind of nodes (the most frequently
requested, those with more programs, etc.).

In order to minimize the number of user refinements, i.e., the number of
user actions needed to find the wanted software, the Browser tries to anticipate
future user actions by analizing her/his past behavior. Thus, the Browser stores
the nodes in which the user had some interest in the past. When the Browser
detects that the user seems to follow a pattern that corresponds with the nodes
that would have been selected by some of the available pruning strategies, then
that pruning strategy will be used in the next prune.

" In our prototype, different constraints are joined by a logical AND operator.

h
O caegory | Al
4 nodes

O programs ./Z
h

P Ontol A
A"lgo des (@) 33 nodgy
11 categories
gg?gg‘n? 9 22 programs
e
[]
A13C15 l/

6 nodes
6 categories
OPngvams b %
® ® \
A13C15E45 / ALCHEls ALER ;/D

) - 13 nodes 10 nodes
9 ‘33‘1390“65 Eis 11 categories 6 categories
4 programs M\ 4 programs@/@

o X

Fig. 5. Analyzing the user behavior and selecting new pruning strategies

In Figure 5 we show how the catalog changes with different pruning strategies.
We use the following notation to indicate the different prunes: Nj'7 means that
node N was pruned using the str pruning strategy (abbreviations: ‘p’ = propor-
tional, ‘h’ = heaviest) and a level of detail of lod%; for example, < A},CT, Bl >
represents the result after 1) pruning node A proportionally and a level of detail
of 13%, 2) pruning the resulting node C proportionally and a level detail of 15%,
and finally 3) pruning node E using the heaviest strategy and a level of detail of
45%. In this example a threshold of three® is used to change the pruning strategy,
and the proportional prune is used by default. 1) In < A7, > we show the first
catalog presented to the user (the whole is pruned for the first catalog). 2) The
user requests a higher level of detail of node C; the pruning strategy remains
the same as in the first prune, and the result is < A7;C%. >. And 3) the user
requests a higher detail about the node E; it is the third time that the user
selects the path that would have been shown if the root node would have been
pruned using the heaviest strategy (< A% >). Therefore the Browser selects
the heaviest pruning strategy in order to make easier to the user the task of
finding the wanted software, as s/he seems to be interested in nodes with many
programs; the result is < AY,CV. Bl >. With the proportional strategy the re-
sult would be < AV, CY, EY. > Notice that if the user was looking for programs
under node K, the heav1est strategy would have selected those nodes just in two

8 The default threshold should be a small value, three or five, and that threshold will
increase each time the Browser detects an error in its estimation. The system stores
a threshold for each user and pruning strategy.

user refinements (< A% E% >; however, selecting the heaviest strategy from the
beginning is a very risky choice, there exist many chances to fail in helping a
user for which the system has no information about what s/he is looking for.

Therefore, the Browser counts the nodes for which the user shows any interest
and, whenever the user seems to follow a recognized pattern during a certain
time, the corresponding strategy will be selected. Whenever the user does not
follow the pattern of the current pruning strategy, the Browser will select the
proportional strategy (which is the least risky) until a new pattern is followed.
The Browser “remembers” previous mistakes, and the threshold of a rejected
strategy is augmented anytime the user stops following its pattern; thus the
Browser tries to improve its predictions.

4.3 Treating a New Refinement Locally

Some actions selected by the user can be performed by the Browser itself, without
using network resources:

— The user requests to open/close a node. The Browser simply shows/hides the
descendants of such a node, no new information is needed.

— The user requests a lower level of detail of some node. As no new information
is needed and the Browser has pruning capabilities, it prunes the selected
node by considering the level of detail indicated by the user. In this case,
the bar corresponding to that node will indicate now that less information
is shown; however, the indicator that represents the Browser buffer about
that node will remain the same (because the amount of information locally
available is still the same).

— The user requests a higher level of detail below the buffer limit. Again, the
Browser has already all the needed information and can prune the catalog

properly.

Notice that, by using the Browser pruning capabilities and the Browser
buffer, many user refinements can be performed without using network connec-
tions. Nevertheless, if the requested refinement cannot be performed using the
information currently available to the Browser, then the new information must
be requested remotely to the Software Manager as explained in the following
subsection.

4.4 Treating Refinements that Implies Using the Network

Some refinements requested by the user cannot be performed by the Browser
itself: the user can request information that the Browser does not have, so a
remote request to the Software Manager is necessary. For that task, the Browser
creates a Catalog Updater agent®, whose goal is to retrieve from the GSN the

® The Catalog Updater could be remotely created on the GSN; however if that remote
creation fails due to network unstability, the Browser should retry such a task.
Creating the agent locally permits the Browser to depute the Catalog Updater to
manage network communications

needed information, by requesting the Software Manager to prune the node
subject of the user refinement with the specified level of detail and keywords.

To achieve its goal, the Catalog Updater agent can follow two alternatives: 1) a
remote call from the user computer to the Software Manager at the GSN, or 2) to
travel to the GSN, to communicate with the Software Manager locally, and travel
back to the user computer. To select a choice, the Catalog Updater considers the
number of retries needed to maintain a network connection open during a certain
time (see [9] for details about this estimate). The Catalog Updater chooses one
of these two alternatives in run-time, as the network status is estimated right
before a remote connection is needed.

As explained in Section 3, new catalogs are returned in an incremental way
(only new information is retrieved to optimize communication costs). Thus, the
Catalog Updater merges the previous user catalog with the new information
properly, and then finishes its execution. In this way, notice that the Browser
upgrades its knowledge with each user refinement, making less frequent the need
for remote connections. So, future refinements can be attended faster and avoid-
ing the use of the network.

5 Performance Evaluation: SRS vs. Tucows

In this section we compare the use of the Software Retrieval Service (SRS)
with the use of Tucows'?. Figure 6 shows a real sample session with the two
systems: (a) the network use and user refinements using Tucows to find a certain
software (a CAD tool), and (b) the same situation when using SRS. Axis-x
represents time in minutes; lines above axis-x represent access to the network
and lines below axis-x represent user refinements (the longest line represents the
moment in which the user found the wanted software).

2

Pl

(b)

Fig. 6. Network use and user refinements using (a) Tucows and (b) SRS

@

We can observe that in Tucows (Figure 6.a) there is a network access for
each user refinement which makes necessary a continuous connection to the net-

10 Data was obtained after testing both software retrieval methods by different kinds
of final users. Each user retrieved several pieces of software, first with the SRS and
then with Tucows. Most of the users already knew Tucows.

work. However, in SRS (Figure 6.b), as the system is able to manage some user
refinements without remote access, there exist long time gaps for which SRS did
not access the network. This feature makes the system more robust to temporal
network disconnections, and enables considering an automatic mechanism that
decides to disconnect the user computer from the net, to reduce the cost of GSM
wireless connections.

In Figure 7 we show how the total time was spent in different tasks (a) when
using Tucows and (b) when using SRS. Axis-x shows the different software that
users looked for, and axis-y shows the average time spent. Notice that, although
using Tucows can sometimes be faster, using SRS reduces the network commu-
nication cost (for example in Figure 7, when looking for a DBMS).

O Data transfer B Reading Catalog ODzta Transfer BReading Catalog 8 Cthers

o 0w & @ @ o B o= o
time in minutes

é I T & s
s)@@@{ﬁs@ é@}a @@e & éal{bd;é@ d?g\; f&aa& @59 @%@#
afb
o
(a)

Fig. 7. Time-consuming tasks for different (a) Tucows and (b) SRS sessions

6 Conclusions

Taking into account the widespread use of mobile computers, we have presented
in this paper a service that allows users of those computers to retrieve software
from existing software repositories in an easy, guided and efficient way. Easy, be-
cause the service allows users to express their software requirements at semantic
level, i.e., they express what they need but not how to obtain it. Guided, because
the service, using specialist knowledge-driven agents, only presents to the user
those software categories related to her/his requirements (a customized catalog)
and helps her/him to browse those categories until the wanted software is found.
Finally, it is efficient because, although the service can be used on any kind of
computer, it puts on a special emphasis on mobile users, saving wireless commu-
nications. The reported performance results, obtained using the implemented
prototype, corroborate this when comparing the service with a more classical
way of obtaining software, such as accessing the Tucows website.

7

Acknowledgements

We would like to thank V. Pérez his priceless help in the implementation of the
prototype. Special thanks to many anonymous users that tested our system for
performance evaluation.

References

CNET Inc., 1999. http://www.download.com.

2. G. Wiederhold et al. Ontoagents. http://WWW-DB.Stanford. EDU/OntoAgents/.

10.

11.

12.

A. Goni, A. Illarramendi, E. Mena, Y. Villate, and J. Rodriguez. Antarctica: A
multiagent system for internet data services in a wireless computing framework. In
NSF Workshop on an Infrastructure for Mobile and Wireless Systems, Scottsdale,
Arizona (USA), October 2001.

IBM Corporation. TME 10 Software Distribution - Mobile Agents SG24-4854-00,
January 1997. http://www.redbooks.ibm.com/abstracts/sg244854.html.

C.A. Knoblock, S. Minton, J.L. Ambite, N. Ashish, I. Muslea, A.G. Philpot, and
S. Tejada. The ariadne approach to web-based information integration. To ap-
pear in the International the Journal on Cooperative Information Systems (IJ-
CIS) Special Issue on Intelligent Information Agents: Theory and Applications,
10(1/2):145-169, 2001. http://www.isi.edu/info-agents/ariadne/.

E. Mena, A. Illarramendi, and A. Goni. A Software Retrieval Service based on
Knowledge-driven Agents. In Fith IFCIS International Conference on Cooperative
Information Systems (CoopIS’2000), Springer series of Lecture Notes in Computer
Science (LNCS), Eliat (Israel), September 2000.

E. Mena, A. Illarramendi, and A. Goni. Automatic Ontology Construction for a
Multiagent-based Software Gathering Service. In proceedings of the Fourth Inter-
national ICMAS’2000 Workshop on Cooperative Information Agents (CIA’2000),
Springer series of Lecture Notes on Artificial Intelligence (LNAI), Boston (USA),
July 2000.

E. Mena, A. Illarramendi, and A. Goni. Customizable Software Retrieval Facility
for Mobile Computers using Agents. In proceedings of the Seventh International
Conference on Parallel and Distributed Systems (ICPADS’2000), workshop Inter-
national Flexible Networking and Cooperative Distributed Agents (FNCDA’2000),
IEEE Computer Society, Iwate (Japan), July 2000.

E. Mena, J.A. Royo, A. Illarramendi, and A. Goni. Adaptable software retrieval
service for wireless environments based on mobile agents. In 2002 International
Conference on Wireless Networks (ICWN’02), Las Vegas, USA. CSREA Press,
June 2002.

D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka,
D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White.
MASIF, the OMG mobile agent system interoperability facility. In Proceedings
of Mobile Agents ’98, September 1998.

E. Pitoura and G. Samaras. Data Management for Mobile Computing. Kluwer
Academic Publishers, 1998.

Tucows.Com Inc., 1999. http://www.tucows.com.

