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Abstract-- The new advances in sensor technology, PDAs and 

wireless communications favor the development of a new type of 
monitoring systems that can provide patients with assistance 
anywhere and at any time. Of particular interest are the 
monitoring systems designed for people that suffer from heart 
arrhythmias, due to the increasing number of people with 
cardiovascular diseases. PDAs can play a very important role in 
these kinds of systems because they are portable devices that can 
execute more and more complex tasks. The main questions 
answered in this paper are whether PDAs can perform a complete 
ECG beat and rhythm classifier, if the classifier has a good 
accuracy and if they can do it in real time. In order to answer 
these questions, in this paper we show the steps that we have 
followed to build the algorithm that classifies beats and rhythms, 
and the obtained results, which show a competitive accuracy. 
Moreover we also show the feasibility of incorporating the built 
algorithm into the PDA. 
 

Index Terms--ECG classifier, monitoring systems, ubiquitous 
computing.  

I. INTRODUCTION 

ATIENTS with heart rhythm irregularities which are not 
detected on a normal stationary electrocardiogram (ECG) 

require some type of monitoring. By looking at the different 
devices and monitoring systems commercially available and 
some other research proposals we have made a classification, 
based on the following features: a) systems that record signals 
and perform classification off-line; b) systems that perform 
remote real-time classification; and c) systems that provide 
local real-time classification. For the last ones, we differentiate 
them taking into account the level of mobility. 

Among the first group of systems and devices the Holters 
stand out [1]. The use of a holter consists in placing electrodes 
(leads) on the patient’s chest; these leads are attached to the 
holter. After the patient is sent home and goes back to normal 
life, a tape records a continuous ECG for 24 or 48 hours. One 
or two days later, the holter is removed and the tape is 
analyzed. A physician will see each of the patient’s heart beats 
and if abnormal beats or rhythms occurred during that period, 
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they would be identified by the physician. Nowadays, there are 
also other more sophisticated recording devices like Medtronic 
Reveal® Insertable Loop Recorder [2] that allows for up to 14 
months recording of ECG episodes. With that device, in case 
the user experiments a fainting episode, for example after 
waking, the user can activate a button in a hand-held device 
and a physician can analyze the stored information a posteriori 
and determine whether the fainting episode was caused by an 
abnormal heart rhythm. Although these solutions (holters and 
new devices) have the advantage that patients can continue 
living a normal life, they present a serious drawback: if the 
patient suffers from a serious rhythm irregularity, only 
recording is performed and not real-time classification of 
ECGs: the classification is performed off-line. 

 In order to overcome the previous restriction, there are 
proposals, which belong to the second group, where remote 
real-time classification is performed while patients continue 
living a normal life. Vitaphone [3] commercializes a card that 
can transmit ECG data by infrared to a mobile phone that 
automatically transmits the ECG to a service center where the 
ECG analysis can be made. QRS Diagnostic [4] (which 
acquired Ventracor's Cardiac e-Health Division in 2003) 
commercializes the EKGCard, that can convert any computer 
(PC, laptop or PDA) into an electrocardiograph that allows the 
visualization and storing of ECG data. They also provide 
analyzer software of the ECG signal that runs only at PCs or 
laptops but not at PDAs, although the result of the analysis can 
be made available at the PDA for reviewing purposes. Cardio 
Control [5] commercializes a product that allows the 
visualization and recording of ECG signals in a PDA. Those 
signals can be transferred to a workstation where they can also 
be analyzed and printed. Additional features like GSM/GPRS 
transmission to an analyzing unit are also being developed. 
Active Corporation [6] commercializes the ActiveECG, a 
device that can be connected to a PDA, store ECG signals and 
perform a basic cardiac monitoring (identification of QRS, 
mainly). Pulse Medical Limited [7] commercializes a product, 
MeditSense, that is a complete 12 lead ECG system designed 
for mobile and stationary use where ECG data can be recorded 
in a Tablet PC (not in a PDA). The MeditSense system also 
provides interpretation of the ECG which can be used as a 
guide for diagnosis conclusions. MobHealth project [29] has 
developed a vital signs monitoring system based on a body 
area network and a mobile-health service platform that can 
transmit sensor measurements via UMTS o GPRS to a back-
end system, where a remote detection of emergencies is 
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performed. 
Although the previous systems allow for a real-time 

monitoring of the ECG signal, they perform a remote real-time 
monitoring. Most of them make use of mobile telephones 
and/or PDAs (Personal Digital Assistant) to capture the ECG 
signal and send it to a monitoring center where the real-time 
classification is performed. They continuously send ECGs 
through a wireless communication network. In spite of the 
advantages these kinds of systems provide in relation to 
recording devices, they still present certain limitations related 
to the fact that the analysis is not performed in the place where 
the signal is acquired. In fact, there is a loss of efficiency in the 
use of a wireless network because normal ECGs are also sent 
(which implies a high cost); and, in case the wireless network 
is not available at some moment, there might be a loss of ECG 
signal with the corresponding risk of not detecting some 
anomalies (unless the signal is recorded in the mobile device 
and sent when the wireless network is available again). 

In the third group of systems we consider those that provide 
real-time classification by using an architecture that includes 
an intermediary local computer between the sensors and the 
control center. Those computers perform some local real-time 
monitoring in order to detect some anomalies and send alarms 
to a control center or a hospital. Among them are research 
projects like @Home [8], TeleMediCare [9] or PhMon [10], 
whose aims are to build platforms for real time remote1 
monitoring. These systems include wireless bio-sensors that 
measure vital parameters such as heart rate, blood pressure, 
insulin level, etc. The health monitoring system, carried by the 
patients, controls these sensors and performs some analysis. In 
the @Home system, the patients are equipped with ambulatory 
sensors that acquire health care data (ECG among others). 
These data are transmitted using wireless communication 
(Bluetooth or DECT2) to a patient’s local PC station. In that 
PC, there is analyzing software that can trigger an alert if some 
thresholds defined by physicians are reached. The 
TeleMediCare system consists of some intelligent bio-sensors 
(ECG included) that have a wireless communication module 
(Bluetooth) which communicates with a Local Patient 
Computer. This computer samples, stores, processes and 
analyses patient data through pre-defined procedures and can 
forward alerts to a Control Center. The PhMon system 
(Personal Health Monitoring System with microsystem sensor 
technology) allows to measure all the patient's relevant vital 
parameters either continuously or at determined time intervals 
without restricting the patients mobility. Among the 
considered sensors we can find ECG sensors connected via 
Bluetooth with a base station (a smartphone or a PDA). In that 
base station an analysis is performed and, in case a critical 
vital parameter is acknowledged, the patient is informed. 
Moreover, the base station, via a mobile communication 
network, keeps in contact with a central electronic patient 
database and a medical call center where the acquired signals 

 
1 “Remote” monitoring from the viewpoint of the hospital. 
2 Digital Enhanced Cordless Telecommunications 

and vital parameters are reviewed by doctors. However, we 
have not been able to find precise descriptions of the kind of 
ECG analysis performed in any of these systems. 

Bai et al. describe another interesting proposal for a 
portable ECG (and also blood pressure) telemonitoring system 
[11]. In a previous version of the system [12] there was a PC-
based home monitor that was able to acquire, digitize and 
analyze the ECG signals transmitted by an ECG detector; and 
also to send alerts to a monitoring center at the hospital via the 
public telephone network (PSTN) whenever an abnormality of 
the ECG exceeded an alarm threshold. Aiming at a more cost-
effective solution, the PC-based home monitor was replaced 
by a portable device (with the main board of an IBM 486 
compatible PC) to ensure that the ECG analyzer algorithm 
could run. For this proposal there exists information about the 
ECG analysis performed: their on-line arrhythmia analysis 
algorithm is an on-line wavelet-based ECG that can recognize 
the following abnormalities: asystole, missed beats, 
bradycardia, tachycardia and premature ventricular 
contraction. 

In those systems that promote an intermediate level, some 
local real-time classification is performed and therefore 
communication costs are reduced, because only anomalous 
ECG signals are sent but not whole ECG signals3. For the 
solutions that make use of PCs in order to perform local real-
time classification and make use of wireless communications 
between sensors and those PCs, the mobility area of the 
patients is not very large: it is almost reduced to their homes.   

We advocate for a solution where a PDA performs local 
real-time classification and detects the ECG anomalies “in 
situ”. This solution allows a real-time classification anywhere 
and at any time where the PDAs can analyze ECG signals, 
detect anomalies, and make use of wireless communications 
like GSM/GPRS/UMTS in order to send those anomalous 
situations to the control center. Some known restrictions of 
PDAs like low battery life and small size of memory will 
require some ad-hoc solutions. Recharging the PDA battery 
would restrict the mobility area of the patient during that 
period (but that could be made while the user is at home). 
Moreover, other proposed solutions have the same problem. 
For example, solutions where mobile phones are used to 
transmit continuously the ECG signal. With respect to the 
limited size of memory, when the PDA memory is full and it is 
necessary to keep its content, then that content should be sent 
to another computer using the best type of connection 
available at that moment (Bluetooth or cable if it is possible or 
GSM/GPRS/UMTS in other case). 

After an exhaustive search we did not find any work that 
builds a complete4 ECG beat and rhythm classifier in a PDA, 
nor an open source complete classifier that we could try to 
install and deploy in a PDA. For this reason we have designed  

 
3 Supposing that tariffs based on “data transmitted” are applied (like in 

GPRS or UMTS), and not tariffs based  on “connection time” (like in GSM). 
4 By a complete ECG beat and rhythm classifier, we refer to a classifier for 

all the beat and rhythms types found in the MIT-BIH database.  
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Fig. 1.  Process to obtain a correct classification 

 
and implemented one. The goal of this paper is twofold: on the 
one hand, to try to find a good classifier5 for beats and rhythms 
and, on the other hand, to demonstrate that it is feasible to 
implement it into a PDA. In order to obtain the most accurate 
beat and rhythm classifier, we have used several tools and 
methods, in machine learning area. Among those methods we 
can mention: decision trees [13], nearest neighbor methods 
[14], neural networks [15], and boosting methods [14]. 

In the rest of the paper we describe the steps followed to 
build the most accurate classifier. Then, we present a 
comparison with other classification works. Later, we show 
some details of the implementation and experiments on a PDA. 
And finally, we present our conclusions and future work.  

II. SELECTING AN ACCURATE CLASSIFIER OF BEATS 

In this section we explain the process that we followed in order 
to select a heart beat classifier that provides competitive 
results. In figure 1, there is an overview of this process, which 
consists of building and evaluating several experiments using 
some available tools, which apply some known methods over a 

 
5 Although the classifier obtained in this paper is good enough to be 

incorporated into any cardioanalyzer software, we think that a classifier to be 
deployed in a PDA should concentrate in classifying more accurately the 
high-risk arrhythmias. That can save some life if they are sent as soon as 
possible by GPRS/UMTS to a control center. 

set of known ECG data source. As it is not possible to 
evaluate all the possible tools and methods with all the existing 
ECG data sources, we explain the steps arranged in the next 
subsections.  

A. Mediator for ECG data 
First, we had to select an appropriate ECG source from which 
the data used in the experiments could be extracted. Moreover, 
building tools that would permit to manage the data stored at 
any source in a common way (for this reason we call to the 
module Mediator for ECG data) was also relevant at this step. 
To select the ECG source we use PhysioNet [16] that provides 
a set of databases that group records of one or more digitized 
ECG signals, as well as a set of their corresponding beat and 
rhythm annotations. Some of those databases are: 1) Long-
Term ST Database. Each record contains ST episodes, rhythm 
changes, and signal quality changes. 2) European ST-T 
Database, which is used to test the ST segments and the T 
waves. 3) MIT-BIH Noise Stress Test Database, which 
contains typical noises in ambulatory ECG recordings. 4) 
ANSI/AAMI EC13 Test Waveforms, which is used to test 
various devices that measure heart rate. 5) MIT-BIH 
Arrhythmia Database, which is used to study the different 
types of arrhythmias. As this is the appropriate database for 
our case we have selected it. 
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The MIT-BIH database contains forty-eight 30-minute 

registers (enumerated from 100-124 and from 200-234 with 
some missing in between). In the first interval of registers, 
several typical clinical cases can be found. In the second one, 
we can find several complex anomalies like nodal rhythms, 
ventricular and supraventricular.  

These registers were collected from men and women 
between the ages of 23 and 89. All registers, were first 
acquired analogically, and later transformed into digital 
signals, with a frequency of 360 Hz, using 11 bits and a 
resolution of approximately 5 mV. Afterwards, the registers 
were analyzed by two independent cardiologists which 
classified them using the nomenclature for type of beats and 
rhythms that appear in tables I and II respectively.  

In figure 2 it appears the data that are significant to classify 
beats. The right input format is composed of the peaks and 
limits of P, QRS and T waves, the PR and QT intervals, the 
size of the P, QRS complex and T waves, their frequency, and 
also the ST and PQ segments.  

In order to obtain values like those that appear in the bottom 
of figure 2, we have used the ECGPUWAVE tool [17] that 
extracts the wave events of an ECG signal. Besides, we built 
an automata that divides the signal into a sequence of beats. 

Once we got the data in the right format, the pre-processed 
data obtained from the ECG source had to be divided in two 
random groups: one for training (66% of the data) and another 
one for validation (33% of the data). The data in the first 
group were used as input data from which the chosen tool and 
method build up the classification model. The data in the 
second group were used to validate that model.  

B. Selection of Tools and Methods 
We selected two well-known machine learning tools in order 
to perform the experiments: 1) Weka [18] is a large collection 
of machine learning algorithms that solve real data mining 
problems and contains tools for classification, clustering, 
association rules, regression and visualization.  

 
Fig. 2.  Parts of a beat 
 

 
 
It was selected because: a) Weka is an open source software 
issued under the GNU General Public License, b) it has a great 
acceptance among the machine learning community and c) it is 
written in Java. Some methods offered by Weka can be seen in 
table III. 2) AnswerTree [19] represents the classification by 
means of a decision tree that contains a set of rules and 
parameters that characterize and define it. Although 
AnswerTree is a proprietary software, we chose it because it 
has been developed by an industry leader in data mining 
technology: SPSS Inc. AnswerTree only offers the method 
decision tree, as can be also seen in table III.    

There are different methods [14] in the machine learning 
area that can be applied to classify beats and rhythms. These 
methods are general-purpose and can be applied in any 
classification task. Although we have tested sixteen methods 
(see second column of table III) only the four most accurate in 
our case are enumerated here: 1) j48.part method that 
implements the C4.5 algorithm, based on decision tree 
techniques [13]. These kinds of methods approximate discrete-
valued target functions. The learned functions are represented 
by decision trees, but they can also be represented as a set of 
if-then rules to improve human readability. 2) IB1 method that 
implements the simple but powerful nearest neighbor 

TABLE III 
LIST OF EXPERIMENTS AND THEIR VALIDATION RESULTS 

Tool        Method Algorithm based on Validation  CPU Time 
Weka j48.Part  C4.5(decision trees) 92.73 %         8m 11s 
Weka IB1 nearest neighbor classifier 92.26 %         12m 
Weka NeuralNetwork  uses backpropagation 91.61 %         2h 10m 
Weka LogitBoost for boosting any classifier 91.53 %         8m 20s 
Weka kstart.KStart entropic distance measure 90.59 %         50m 
Weka KernelDensity  kernel density classifier 90.54 %         7m 43s 
Weka DecisionTable  decision table 90.51 %         3m 28s 
AnswerTree DecisionTree    decision tree 89.05 %         4m 
Weka OneR  1R 83.86 %         3s 
Weka NaiveBayes  Bayesian classifier 70.12 %         5s 
Weka DecisionStump  decision stump 67.55 %         4s 
Weka AdaBoostM1  Boosting a classifier 59.52 %         1s 
Weka Bagging  bagging a classifier 59.52 %         1s  
Weka ZeroR  using a 0-R classifier 59.52 %         1s 
Weka VFI  Voting feature interval  49.92 %         1s 
 Weka HyperPipes  hyperPiper classifier 15.16 %         1s 

TABLE II  
TABLE OF RHYTHM TYPES 

N  Normal sinus rhythm VFL  Ventricular flutter 
PREX  Pre-excitation (WPW) AB  Atrial bigeminy  
SBR  Sinus bradycardia  VT  Ventricular tachycardia 
NOD  Nodal (A-V junctional) rhythm B Ventricular bigeminy 
P  Paced rhythm T  Ventricular trigeminy 
IVR  Idioventricular rhythm AFL  Atrial flutter 
AFIB  Atrial fibrillation BII  II heart block  
SVTA  Supraventricular tachyarrhythmia   

 

TABLE I 
BEAT TYPES 

F   Fusion of ventricular and normal beat N    Normal beat 
L    Left bundle branch block beat  E  Ventricular escape beat 
R  Right bundle branch block beat |  Isolated QRS-like artifact 
j Nodal (junctional) escape beat "  MISSB 
f  Fusion of paced and normal beat ! Ventricular flutter wave 
A   Atrial premature beat J Nodal premature beat 
a   Aberrated atrial premature beat  e   Atrial escape beat 
V  Premature ventricular contraction /   Paced beat 
S  Supraventricular premature beat   
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algorithm [14]. These kinds of methods work by measuring the 
distance of a given point in the feature space to the nearest 
point of known class, and assigning the unknown point to that 
class. 3) Neural Network method that uses back propagation to 
classify instances [15]. The methods based on neural networks 
are computational models that share some of the properties of 
brains: they consist of many simple units working in parallel 
with no central control. The connections between units have 
numeric weights that can be modified by the learning element. 
4) LogitBoost method uses a regression scheme as a learning 
base [14]. Boosting methods work by sequentially applying a 
classification algorithm to reweighted versions of the training 
data (increasing the weight of misclassified cases) and then 
taking a weighted majority vote of the sequence of classifiers.  

C. Build and Evaluate the Experiments  
For each tool-method combination that appears in table III an 
experiment was run taking the training data set as input, which 
is automatically selected by the tool (Weka or AnswerTree). 
The result of each experiment was a classification model, 
which was later validated against the validation data set also 
obtained previously.  

The fourth column in table III shows the result of the 
validation: an accuracy percentage that indicates the amount of 
beats identified as x by the physician and classified as x. This 
type of evaluation is known in the machine learning 
community as hold-out validation [14]. Although the final 
classifier was built with the whole set of cases of the database, 
its recognition accuracy was measured by training the 
classification method in 2/3 of the cases and evaluating this 
trained classifier in the rest 1/3 of the cases6.  Finally, the fifth 
column in table III shows the CPU time needed in the 
computer used (Pentium IV, 512MB RAM, 2,4GHz), to 
induce and validate the methods, that is, only for the learning 
phase.  

D. Choosing the Most Accurate Classifier   
The goal of running the experiments was to obtain the most 
accurate classifier. Thus, we decided to use decision trees 
(method j48.part) to classify beats because it carried out all the 
criteria that we considered relevant: 1) Good results: the 
decision tree obtains the best results classifying the beats with 
a 92.73% accuracy (i.e. the beats identified as x by physician 
and classified as x by the decision tree). 2) Adequacy of 
representation language: it is possible to represent the 
classifier as a tree and as a set of rules which are easily 
understood by people; 3) Flexibility: the rules may be easily 
modified; and finally 4) Efficiency: the time needed to induce 
is fast.  

 
 
 

 
6 In the machine learning area, it is common to validate by using that data 

partition (2/3 for training and 1/3 for validation) [28]. Moreover, we have also 
made the validation by using ½ data for training and ½ for validation and we 
obtained almost the same results.  

 

 
 

TABLE V 
SELECTED ATTRIBUTES 

Evaluator: weka.attributeSelection.InfoGainAttributeEval  
Search:  weka.attributeSelection.Ranker  -T -1.7976931348623157E308 -N -1 
Relation:    test.txt                         Instances:    64260 
 
=== Attribute Selection on all input data === 
Search Method: Attribute ranking 
Attribute Evaluator (supervised, Class (nominal): NOT_LAT:  
Ranked attributes: 
 

1.0246 4  EndWaveR-WaveR  0.5246 7  WaveR 
0.5155   1 Age  0.46     9  Interval_RR   
0.2378   3 WaveR–BeginWaveR  0.46     12 Freq 
0.1836   5 BeginWaveT-

BeginWaveR  
 0.1598   11 Interval_QT  

0.1301   8 Interval_PR  0.1123   10 wave_T 
0.0487   2  Sex  0.0395    6  Nott  

Selected attributes: 4,7,1,9,12,3,5,11,8,10,2,6 : 12 

 
Although, we had already selected the beat classifier we 

continued working with the idea of improving the results of 
classifying beats and we started another training process 
focusing now on the next parameters of the scheme j48.part: 1) 
Determining how deeply to grow a decision tree. There are 
several approaches that we also apply: to limit the number of 
the level of depth or to limit the number of the descendents in 
each node, etc. 2) Reducing error pruning. We used the so 
called reduced-error pruning proposed by Quinlan [20-21], 
that considers each of the nodes in the tree as a candidate for 
pruning. 3) Choosing an appropriate attribute selection 
measurement. A statistical property called “info-gain” [20-21] 
was used to measure how well a given attribute separates the 
training data set according to its target classification. 4) 
Handling training data with missing attribute values. In 
certain cases, the available data may be missing for some 
attributes (for example the absence of P Wave). 

If we observe table IV, we can see the scheme: j48.part with 
the values of two parameters -M 2 that indicates that the 
minimum number of descendents per node considered is 2; and 
-C 0.25 that indicates that 0.25 is the threshold of confidence 
for pruning.  

 

TABLE IV 
BEAT TRAINING 

=== Run information === 
Scheme:      weka.classifiers.j48.PART -C 0.25 -M 2 
Relation:     test.txt            Instances:    64260 
Attributes:   13                   Test mode:  evaluation on training data 
 
R V A ! E L N | / f F a J j S  
0 2 1 2 2 1 1 1 1 1 2 1 1 1 1 R 
2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 V
1 2 0 2 2 1 1 1 1 1 2 1 1 1 1 A
2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 ! 
2 2 2 2 0 2 2 0 2 2 2 2 2 2 2 E 
1 2 1 2 2 0 1 1 1 1 2 1 1 1 1 L 
1 2 1 2 2 1 0 1 1 1 2 1 1 1 1 N
1 2 1 2 2 1 1 0 1 1 2 1 1 1 1 | 
1 2 1 2 2 1 1 1 0 1 2 1 1 1 1 / 
1 2 1 2 2 1 1 1 1 0 2 1 1 1 1 f 
2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 F 
1 2 1 2 2 1 1 1 1 1 2 0 1 1 1 a 
1 2 1 2 2 1 1 1 1 1 2 1 0 1 1 J 
1 2 1 2 2 1 1 1 1 1 2 1 1 0 1 j 
1 2 1 2 2 1 1 1 1 1 2 1 1 1 0 S 
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TABLE VI  
RESULT OF VALIDATION OF THE DECISION TREE 

=== Summary === 
Correctly Classified Instances     21003  96.128 %  
Incorrectly Classified Instances  846      3.872 %  
Kappa statistic 0.934 Total Cost         1248 
Average Cost      0.057 Mean absolute error 0.0045 
Root mean squared error 0.058 Relative absolute error   7.606% 
Root relative squared error  33.66% Total Number of Instances    21849 
    
=== Confusion Matrix === 
a b c d e f g h i j K l m n Clas 
1507 2 3 4 0 1 27 0 0 0 0 4 0 0 a=R  
0 1392 9 5 0 7 113 5 3 33 7 0 0 0 b=V 
5 5 1574 6 1 1 7 1 0 0 0 0 0 0 c=L 
2 1 3 105  2 2 0 0 0 0 0 0 0 0 d=! 
2 0 0 0 31 0 0 0 0 0 0 0 0 0 e=E 
4 4 0 0 0 193 49 0 0 0 0 0 0 0 f=A 
35 73 2 0 0 21 13228 3 44 28 7 0 0 0 g=N 
0 0 0 0 0 0 5 2333 22 0 0 0 0 0 h=/ 
0 0 0 0 0 0 17 37 298 0 0 0 0 0 i=f 
1 17 0 0 0 1 46 0 0 210 0 0 0 0 j=F 
0 5 0 0 0 0 17 0 0 0 19 0 0 0 k=a 
2 1 0 0 0 2 3 0 0 0 0 8 0 0 l=J 
0 0 0 0 0 0 2 0 0 0 0 0 1 0  m=j 
0 0 0 0 0 0 2 0 0 0 0 0 0 0 n=S 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
The next rows indicate the data source (test.txt), the number 

of instances (64,260), the number of attributes used (13), the 
type of test used (evaluation on training data) and the 
incorporation of the cost matrix. For the selection of the 
attributes we used the info-gain value associated to each of 
them and we decided to choose the best ranked 13 attributes. 
In the last row of table V, we show the list of the selected 
attributes among the whole set of cases, where number 4 is the 
first selected taking into account the info gain; number 7 is the 
second and so on.  

The cost matrix in table IV represents the weights used to 
penalize bad classifications. The main diagonal of a normal 
cost matrix contains only zeros (0), because it corresponds to 
the case of correct classifications. Every cell that is not in the 
main diagonal of a normal cost matrix usually should contain 
ones (1). The 0 and 1 are values used in the zero/one loss 
approach where the general idea is that in many contexts, the 
costs of all errors are equal. But in our context to confuse a 
high risk arrhythmia that requires medical assistance in less 
than 3 minutes with a low risk arrhythmia may have serious 
consequences. Therefore to improve the classification we used 
information about the specific domain and we have introduced 
the values 2 in the following cases: 1) The rows and columns 
with !-label, E-label and F-label are penalized because the 
sequence of the first label are associated with Ventricular 
Flutter arrhythmia (VFL) and the sequence of the two last are 
associated with Idioventricular rhythms (IVR), which both are 
associated to the high-risk arrhythmia that requires a medical 
assistance in less than 3 minutes. 2) The row and column V-
label are penalized because the sequences of these labels are 
associated with the Ventricular Tachycardia (VT) that requires 
a medical assistance in less than an hour. 

In table VI, we show the new validation results obtained by 
using hold-out validation and the Weka tool. At the top of that 

table, we show the percentage of correctly classified beats 
(96.128%), immediately afterwards we show the percentage of 
incorrectly classified beats (3.872%). The confusion matrix is 
also shown, where the horizontal axis represents the 
classification made by the physician, whereas the vertical axis 
represents the classification made by the selected rules.   

Once the most accurate beat classifier and a set of rules 
associated with it were obtained, it was necessary to determine 
an accurate rhythm classifier.  

I. SELECTING THE MOST ACCURATE  RHYTHM CLASSIFIER  
In the specialized cardiologic literature [1] descriptions of 
arrhythmias can be found. Although, they are not very explicit, 
it is possible to represent them using a computer language. 
However, in order to select the most appropriated set of rules 
we used the following approach: 1) we rewrote the rules, 
corresponding to the arrhythmia descriptions found in the 
literature (we call it Cardiologic Rules); 2) in parallel, we 
obtained the arrhythmia rules by using techniques based on 
decision trees (we call it Inferring Rules); and last, 3) we used 
the combination rules that classify arrhythmias and provides 
competitive results. We are going to explain those steps.  

A. Cardiologic Rules 
In the specialized literature we can find for example the next 
definition for Ventricular Tachycardia (VT): “The VT is the 
result of a series of rapidly firing electrical impulses arising 
from within the ventricles”. In other words, VT is a sequence 
of rapid ventricular impulses or beat (V). That rhythm 
definition can be directly translated into a rule. However, there 
are other ambiguous and contradictory rhythm definitions. For 
example, the definition of the Atrial Fibrillation arrhythmia 
(AFIB) is: “The atria may beat irregularly and very rapidly,  
between 350 and 600 times per minute. This causes the 
ventricles to beat irregularly in response as they try to keep up 
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TABLE VIII 
CHOSEN RULES 

Rhythm Cardiologic Inferring Chosen Rule 
B 89 % 82 % Cardiologic 
VT 47 % 44 %  Cardiologic 
N 96 % 84 %  Cardiologic 
VFL 94 % 94 % Cardiologic 
IVR 82 % 81 %  Cardiologic 
SVTA 90 % 82 % Cardiologic 
T 94 % 54 % Cardiologic 
AFIB 40 % 54 % Inferring 
P 95 % 95 % Cardiologic 
NOD 54 % 52 % Cardiologic 
PREX 69 % 91 % Inferring 
SBR 100 %    100 % Cardiologic 
AFL 20 % 32 % Inferring 

with the atria”. In other words, AFIB is a sequence of rapid 
atria beat (A) with some isolated ventricular beat (V). The 
sequence is very fast 350-600 times per minute. Moreover, the 
definition of the Atrial Flutter (AFL) arrhythmia is: “The atrial 
contractions are less rapid than in the AFIB, however, usually 
between 200 and 400 beat per minute, and are regular.” In 
other words, it is a rapid sequence (200-400) of atrial beat (A). 
In any case, we have translated these definitions into rules.  

B. Inferring Rules  
In order to make the experiments that permitted us to select the 
accurate classifier, we needed to group the previously 
classified beats into groups of four beats. These groups were 
the input to the decision tree that classifies the different 
rhythms.  

In this case, we only show the selected rhythm classifier. 
Thus, if we look at row 1 of table VII we can see the schema 
used: j48.part with parameters -C 0.25 and -M 2. The next 
rows show the data source (test.txt), the number of instances 
(64,260), the number of attributes used (56) and the type of 
test used (evaluation on training data). This training process 
was built considering the parameters explained in subsection 
2.D. In the cost matrix the incorrect classifications of 
arrhythmias VFL, IVR, VT, T and NOD are penalized in their 
rows and columns. Te reason is that they require a medical 
assistance in less than 3 minutes (VFL and IVR) or less than 
an hour (VT) or that the other arrhythmias (T and NOD) show 
that the user has a high-risk of suffering a heart attack.   

C. Combining Rules 
In order to select the best set of rules that classified rhythms 
we evaluated the Cardiological Rules and Inferred Rules 
independently. From left to right, table VIII shows: the type of 
rhythm, the accuracy percentage of Cardiologic Rule and 
Inferring Rule respectively and finally the type of rule chosen. 
The percentage indicates the rhythms identified by the 
physician as x and classified by the set of the rule as x 
rhythms; that is, correct classification percentage.  

Notice that, we chose the rules that had a higher percentage, 
and in case that both types provided the same percentage we 
chose the cardiologic rules because they are clearer for 
physician and they are focused on the specific rhythms.  

D. Validation of the Beat and Rhythm Classifier  
The validation results of the rules that classify the heart 
rhythms are shown in table IX. It must be noticed that the 
rhythm classifier is using the beat types identified by the beat 
classifier as input (and not the beat type annotations found in 
the MIT-DB). First, we summarize the features of the 
validation; next, we present a confusion matrix. At the top of 
table IX we show the percentage of correctly classified 
rhythms (86.91 %), immediately afterwards we show the 
percentage of incorrectly classified ones (13.09 %).  

The main diagonal shows the number of correctly classified 
rhythms. For example, in class c=VFL (row 3) there are 204 
rhythms classified correctly, but 13 are classified wrong. 
Moreover in class d=IVR (row 4) there are 101 rhythms 
correctly classified but 23 incorrectly.  

E. High-Risk Arrhythmias and Episodes 
Although the obtained results were relevant, with the goal of 
improving them we followed the next approach. 

First, with the help of some cardiologists, we made the next 
classification of rhythms, depending on their risk of suffering a 
heart attack (from highest to lowest): 
1. Heart attack: requiring medical assistance in less than 3 

minutes. There are two arrhythmias: VFL and IVR. 
2. Very high risk of heart attack: requiring medical 

assistance in less than an hour. There is only one: VT. 

TABLE VII 
RHYTHM TRAINING 

Scheme:  weka.classifiers.j48.PART -C 0.25 -M 2    
Relation:  test.txt  Instances:    64260 
Attributes:   56  Test mode:    evaluation on training data 
 
Evaluation cost matrix:  
N P B VT T NOD IVR AFIB AFL VFL SVTA  
0 1 1 2 2 2 2 1 1 2 1 N 
1 0 1 2 2 2 2 1 1 2 1 P 
1 1 0 2 2 2 2 1 1 2 1 B 
2 2 2 0 2 2 2 2 2 2 2 VT 
2 2 2 2 0 2 2 2 2 2 2 T 
2 2 2 2 2 0 2 2 2 2 2 NOD 
2 2 2 2 2 2 0 2 2 2 2 IVR 
1 1 1 2 2 2 2 0 1 2 1 AFIB 
1 1 1 2 2 2 2 1 0 2 2 AFL 
2 2 2 2 2 2 2 2 2 0 2 VFL 
1 1 1 2 2 2 2 1 1 2 0 SVTA 

TABLE IX 
RESULT OF VALIDATION 

Correctly Classified Instances      62389  86.91 % 
Incorrectly Classified Instances  9840   13.09 % 
 
=== Confusion Matrix === 
a     b   c   d    e   f    g    h    i  j   k   l    Class 
1934 91  2   0   0   12  25   3    0  0   0   465   a = B 
16   70  0   0   0   2   11   1    0  0   0   66   b =VT 
0   2   204  0   0   0   0    0    0  0   0   11   c =VFL 
0   17  1   101  0   0   0    0    0  0   0   5    d =IVR 
0   0   7   0   353  0   0    0    0  0   0   21   e =SVTA  
6   14  0   0   0   913  14   0    0  0   0   293   f =T 
38   84  0   0   0   156  5622  21   0  0   0   3506   g =AFIB 
0   12  0   0   0   0   4    7532 0  0   0   380   h =P 
0   0   0   0   0   0   0    0    36 0   0   14   i =NOD 
0   0   0   0   0   0   0    0    0  255  0   117   j =PREX 
0   0   0   0   0   0   0    0    0  0   594  17   k =SBR 
256  474  53  164  0   903  1480  168  2  251  6   47387 l =N 

 



Real-Time Classification of ECGs on a PDA. Rodríguez, Goñi and Illarramendi 
 

8

3. High risk of heart attack: arrhythmias that precede a heart 
attack: NOD and T. They are arrhythmias that show that 
the user is going to suffer from arrhythmias of type 1 or 2.  

4. Moderate and low risk of heart attack: abnormal rhythms 
that must be attended, but not necessarily notified 
immediately to the hospital. There are several: AFL, 
AFIB, PREX, SVTA, P, B and SBR.  

5. Normal sinus rhythm (N) is the correct function of the 
heart. 

We considered the groups 1, 2 and 3 as high-risk 
arrhythmias, that is, arrhythmias that should be notified to the 
hospital when they are detected by the system. 

Second, we defined episode as a sequence of consecutive 
beats that appear in a record of the MIT-BIH database, and 
that are associated with the same rhythm annotation (given by 
the cardiologists). One example of Bigeminy episode (B) can 
be a sequence of twelve beats (NVNVNVNVNVNV). In the 
MIT-BIH database there are 918 episodes. In table X, for each 
type of rhythm it appears the number of episodes found in the 
MIT-BIH database, the risk group and the action that should 
be taken. Moreover, an episode of risk group 1, 2 or 3 is 
successfully classified by the system if there is at least one 
group of four consecutive beats in that episode that is 
classified in that risk group (1, 2 or 3). Notice that, the 
monitoring system will classify the rhythm as soon as a 
relevant group of beat of the rhythm is detected. At that point, 
an alarm could be sent to the hospital. An episode of risk 
group 4 is successfully classified by the system if there is at 
least one group of four consecutive beats in that episode that is 
classified in that risk group 4. In that case, no alarm could be 
sent to the hospital. 

However, for the case of risk group 5 (normal sinus rhythm) 
an episode of that group is successfully classified if all beats in 
that episode are associated with normal sinus rhythms. But, we 

do not consider that the normal sinus rhythm episode is not 
successfully classified if the first beats of that episode are 
associated with the rhythm of the previous episode, or if the 
last beats of that episode are associated with the rhythm of the 
next episode. In that case, we consider that the monitoring 
system is still detecting the previous rhythm or anticipating the 
next one. 

In table XI, we show the number of episodes correctly 
classified. This form of validating the rhythms based on 
episodes instead of validating the current rhythms for each 
beat is not only more realistic but also shows a much better 
performance for the high-risk arrhythmias than it was shown in 
table VIII. All episodes of high-risk 1 were correctly classified 
(in table VIII the accuracy percentages for VFL and IVR were 
94% and 82% respectively); 97.95% of episodes of high-risk 2 
were correctly classified (the accuracy percentages for VT
 was 47% in table VIII); 95% of episodes of high-risk 3 were 
correctly classified (the accuracy percentages for NOD  and T 
were 54% and 94% in table VIII). On the contrary, the 
accuracy percentage for normal sinus rhythms was 67.35% 
instead of 96% (see table VIII) which means that more false 
alarms would be sent to the hospital. The number of false 
alarms can be reduced by adding harder constraints to the rules 
for VT and T arrhythmias. For example, by considering that a 
T arrhythmia occurs when the beat sequence VNNVNNVNN 
is found instead of the sequence VNNVNN, then the 
percentage for normal sinus rhythm would be much better 
(75.06% instead of  67.35%), but on the contrary, the accuracy 
percentage for high-risk arrhythmias would be worse (100%, 

TABLE X 
EPISODES 

Risk-Group  TYPE Nro- episodes Action 
1 IVR(Idioventricular rhythm) 2 Notify 
1 VFL(Ventricular Flutter) 6 Notify 
2 VT(Ventricular Tachycardia) 49 Notify  
3 NOD(Nodal Rhythm) 6 Notify 
3 T(Ventricular Trigeminy) 74 Notify  
4 AFL(Atrial Flutte) 3 NO Notify  
4 AFIB(Atrial Fibrillation) 79 NO Notify  
4 PREX(Pre-excitation) 45 NO Notify  
4 SVTA(Supraventricular tachyar. ) 17 NO Notify  
4 B(Ventricular Bigeminy) 182 NO Notify  
4 P(Paced Rhythm) 64 NO Notify  
4 SBR (Sinus Bradycardia) 2 NO Notify  
 5 N(Normal sinus rhythm) 389 NO Notify 

 

TABLE XI  
RHYTHM VALIDATION  

 1 2 3 4 5 Total Correct Wrong  % 
1 8 0 0 0 0 8 8 0 100   % 
2 0 48 0 1 0 49 48 1 97.95 % 
3 0 0 76 1 3 80 76  4 95     % 
4 0 30 23 339  0 392 339 53 86.47 % 
5 3 84 40 0 262 389 262 127 67.35 % 

 

TABLE XII 
COMPARISON AMONG BEAT CLASSIFIERS 

Work Reference   #Beat  % TP    Method 
Prasad        13    96.77%   Wavelet and Neural Network 
Prasad /USCL    5     98.02%   Neural Network 
Prasad /FTNN    3     98.00%   Fourier Transf Neural Net 
Prasad /DWT1    10    97.00%   Discrete Wavelet Trans 
Prasad /DWT     13    96.79%   Discrete Wavelet Trans 
Prasad /FHhd-HOSA 7     96.06%   Fuzzy and Neural Network 
Prasad /MOE     4     94.00%   Mixture-of-Experts 
Prasad /DFT1     10    89.40%   Discrete Fourier Transform 
    
Osowski       12    95.91%   HER/HOS 
Lagerholm      all MIT  98.50%   Clustering 
Cardident       all MIT  87.00%   Algoritmo CSL 
    
MOLEC      all MIT  96.128%  Decision Tree 

 

TABLE XIII  
COMPARISON AMONG RHYTHM CLASSIFIERS 

Work Reference  VFL  VT    IVR  NOD  T  N     DB 
Dingfei Ge     98.6% 97.78%   -   -    -  93.2%  Own-Record 
        
Ayesta / SPDR    81.9% 94.6%  -   -    -  100 %  MIT-DB 
Ayesta /RT     81%  90%   -   -    -  -     MIT-DB 
Ayesta /SPRT   93%  96%   -   -    -  -     MIT-DB 
Ayesta /X-S Zhang 100%  100%   -   -    -  100 %  Own-Record 
Ayesta /Regresion 100%  100%   -   -    -  -     Own-Record 
Ayesta /CWA    100%  50%   -   -    -  -     Own-Record 
Ayesta /ALPF   91%  75%   -   -    -  -     Own-Record 
Ayesta /ANN    59.1% 91.2%  -   -    -  99.3%  Own-Record 
        
MOLEC/Rhythm   94%  54%   82%  72%  94%  96%   MIT-DB 
MOLEC/Episodes 100% 97.95% 100% 95%  95%  67.35% MIT-DB 
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97.95%, 86.53% instead of 100%, 97.95%, 95%). Moreover, 
by considering also that a VT arrhythmia occurs when 3 
consecutive V beats appear (instead of 2), then the percentage 
for normal sinus rhythm would be much better (86.68% 
instead of 67.35%), but on the contrary, the accuracy 
percentage for high-risk arrhythmias would be worse (100%, 
90%, 86.53% instead of 100%, 97.95%, 95%). In summary, 
the classifier could be setup in order to augment or reduce the 
number of false alarms. 

II. COMPARISON WITH OTHER CLASSIFICATION WORKS  
In this section we compare the results obtained using our 

beat and rhythm classifiers (labeled with MOLEC7 in tables 
XII and XIII) with the results claimed by other research works. 
Making such a comparison is not an easy task because it 
depends on many factors like the ECG databases used and the 
number of beat and rhythm types to be classified8. Taking into 
account that we selected the MIT-DB ECG database, we 
searched some works that build beat and rhythm classifiers by 
using that database. 

In table XII, we show some details about works that define 
beat classifiers. For each one of them, it appears a work 
reference, the number of beat types to be classified, the 
percentage of true positives (%TP) and the classification 
method used. 

Prasad et al. [22] propose a method that is capable of 
distinguishing the normal sinus beat and 12 different abnormal 
beats with an accuracy percentage of 96.77% (see row 1).  In 
the same paper, they present a comparison with other works 
that we also present in table XII (rows 2 to 8). Osowski et al. 
[25] present an expert system (see row 9 in table XII), based 
on the application of Support Vector Machine for reliable 
heart beat recognition on the basis of the ECG waveform. Two 
different preprocessing methods (HERmite characterization 
and High Order Statistic) have been integrated into the expert 
system to improve the overall accuracy of heart beat 
recognition (95.91%) by 12 different types of beats. None of 
the previous works try to classify all the 17 beat types in MIT-
DB. Lagerholm et al. [24] have devised a procedure for 
clustering all the MIT-DB beat types into classes. The method 
entails HERmite function representation and self-organized 
neural networks for the purpose of beat clustering. 
Decomposing the beats into five Hermite function turns out to 
be sufficient for achieving good classification accuracy 
(98.5%). They claim that they need less than 1 minute to 
classify a 30-minute ECG signal, but we do not know whether 
the method could be applied with good results in real-time 
(and, in particular, running in a PDA). CARDIDENT [23] is a 
system of on-line detection, classification and identification of 
the most important waves of the beat: the QRS complex, with 
the aim of classifying the different types of heart beats.  

 
7 MOLEC stands for “Monitorización On-Line de Enfermos del Corazón” 

(On-Line Monitoring for Heart Patients) 
8 It is obvious that the problem of classifying data into N different classes 

is more complex than classifying data into M classes when N>M. 

 
Fig. 3. ECG visualization in MOLEC 
 
CARDIDENT classifies all the MIT-DB beat types with an 
error of 13% and a sensibility of 87%. MOLEC only reaches 
an error of 3.581% classifying beats and it also classifies 
rhythms. 

In table XIII, we show some details about works that define 
rhythm classifiers, and in particular, works that classify high-
risk arrhythmias. For each one of them, it appears a work 
reference, and the accuracy percentage for VFL, VT, IVR, 
NOD and T high-risk arrythmias and the normal rhythm N. 
Finally, the ECG database used (notice that in this case we are 
comparing also with other works that use their own ECG 
records). 

Dingfei Ge et al [27] have proposed a simple autoregressive 
(AR) modeling technique to classify the beat types N, V, S and 
the rhythms SVTA, VT and VFL, also with data stored in their 
own ECG records (see row 1 in table XIII). The reported 
accuracy percentage for VFL, VT and N are  98.6%,  97.78% 
and 93.2% respectively. Ayesta et al. [26] proposed the 
method of Sample Percentage in the Dynamic Range (SPDR) 
for classification of N, VFL and VT (see row 2 in table XIII). 
In the same paper, they present a comparison with other works 
that we also present in table XIII (rows 3 to 9). Some of them 
claim very good accuracy for VFL, VT and N. For example, 
the work reference in row 5 obtained a perfect classifier for 
VFL, VT and N by using the CM algorithm but own ECG 
records as input data. However, Ayesta et al. claim that the 
CM algorithm works much worse when applied to the MIT-
DB database. Therefore, it seems that it may be unfair to 
compare our classifier with others that do not use MIT-DB but 
their own ECG records. Our rhythm classifier (see last 2 rows 
in table XIII) obtains very good results in the classification of 
high-risk arrhythmias, although the set of rhythm types to be 
classified is greater than in the previous works. The accuracy 
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percentage for some arrhythmias improves a lot when 
complete episodes are considered instead of individual beats 
inside a rhythm. But, on the contrary, the accuracy percentage 
for N normal rhythm gets lower (from 96% to 67.35%).  

In any case, we can conclude that our beat and rhythm 
classifier is comparable to any of the classifiers for which we 
have found accuracy percentages in the literature. 

III. IMPLEMENTATION OF THE CLASSIFIER ON A PDA 
After having developed an ECG beat and rhythm classifier it 

was necessary to prove if the classifier could be run, in real 
time, into a PDA, because it is known that the most powerful 
current PDAs, even with the latest technological advances, are 
environments with limited computing resources if compared to 
PCs. Moreover, the processing tasks that a monitoring system 
implies require a high computation cost: the signal acquisition, 
processing and visualization (see figure 3). 

The signal acquisition9 implies: the picking up of the sample 
(in our case with frequency of 360 samples per second that is 
equivalent to 21,600 samples per minute), the conversion of 
the digital samples into a format understandable by the rest of 
the system (signal preprocessor and classifier) and their 
grouping together into signal packages with a defined size.  

 The signal processing implies running several threads: the 
thread that performs the preprocessing and classification, the 
thread that stores the signal and classification results in a local 
database; the thread that manages the alarms and finally 
another thread in charge of the communications between the 
PDA and a control center. The hard restriction here is that the 
thread that preprocesses and classifies the signal has to finish 
before the signal acquisition obtains the next signal package. 

In this section, we will answer the next question: which is 
the appropriate size of a signal package? or, in other words, 
how often does the signal process have to be executed? We 
will call “processing cycle duration” to that time. It is obvious 
that the greater the processing cycle duration is, the greater the 
rhythm detection delay is. The rhythm detection delay grows 
with the signal package size because at least four beats are 
needed in order to classify the rhythm, and some beats may 
delay until the package is completed according to the 
processing cycle duration. However, the processing cycle 
duration cannot be very small because the system would get 
overloaded: the threads of the signal processing have to 
synchronize with the thread that performs the signal 
acquisition. And, moreover, it does not have much sense to 
start a new processing cycle if a new signal package with at 
least one beat has not yet arrived: no new rhythm can be 
detected.  

 
 
 
 
 

 
9 For this experiment, we simulate the ECG sensors with software in a PC 

that sends the ECG data of the MIT-DB to the PDA, via Bluetooth. 
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Fig. 4.  Time in which an acquired signal starts its processing, for signal 
packets of one and two seconds 

 
Therefore, in order to establish the optimal processing cycle 

duration we tested the system performance for processing 
cycles of one and two seconds respectively. Both types of test 
were performed in the PDA10 and in a PC (with the goal of 
pointing up their different performance). The experiment 
consisted on: 1) running several threads into each device: a 
signal acquisition thread and all threads involved in the signal 
processing and classification, storing and visualization; and 2) 
measuring when the signal package, provided by the signal 
acquisition, started its processing in the signal processor and 
classifier.  Notice that only processing times of those threads 
into PC and PDA had an influence on that time and not 
communication times from the sensors to PC and PDA. 

Figure 4 shows four functions: PC-1, PDA-1, PC-2 and 
PDA-2. Every point (x,y) of all those functions indicates that 
the signal package provided by the signal acquisition thread at 
the second x is processed by the processor thread at the second 
y. For PC-1 and PDA-1 functions, the processing cycle 
duration is of 1 second, and for PC-2 and PDA-2 functions it is 
of 2 seconds. In PC-1 and PC-2, the processing cycle is 
performed in the PC, and, obviously PDA-1 and PDA-2 in the 
PDA. As it can be observed in the figures, in both cases the 
system running in the PC achieves a stable state since the 
corresponding functions are very close to the diagonal function 
 

10 The platform used for the implementation of classifier has been the next 
PDA: an iPaq 3970 with a 400Mhz XScale processor, 64MB SDRAM and 48 
MB Flash memory. The PC configuration was Pentium IV (512MB RAM, 
2.4GHHz). 
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(that would mean that the signal packet received at second x is 
processed by the system at second x). The stability comes from 
the fact that the difference between the diagonal and the PC-x 
functions does not grow with time. In other words, the system 
performs all the tasks before the next signal package has been 
arrived. 

In the PDA case, for processing cycles of one second, this 
property is not achieved but it was achieved with processing 
cycles of two seconds. Therefore, the optimal processing cycle 
duration would be of 2 seconds for the case of the PDA. In that 
case the average rhythm detection delay would be of 6.66 
seconds. In the PC case, the optimal processing cycle duration 
would be of 1 second being the average rhythm detection delay 
of 4.43 seconds. 

IV. CONCLUSION AND FUTURE WORK 
Monitoring systems that perform a complete ECG analysis in a 
local device near the patients are of great interest because they 
allow to improve the quality of life of persons that suffer from 
arrhythmias and reduce communication costs. For an anywhere 
and at anytime monitoring system, used devices have to be 
actually mobile. That is why we advocate for using PDAs as 
the core of these kinds of monitoring systems. In this paper, we 
have presented the steps followed in order to build a complete 
ECG beat and rhythm classifier for a PDA. The obtained 
results for the classifier have shown that it is comparable to 
other ECG classifiers found in the literature. In particular, it 
provides a very good accuracy for classifying rhythms (100% 
for arrhythmias that require medical assistance in less than 3 
minutes, 97.95% for arrhythmias that require medical 
assistance in less than an hour and 95% for arrhythmias that 
usually happen before a worse arrhythmia). 
Finally, we have incorporated that classifier into a PDA, and 

performed a set of experiments that show its feasibility. 
Moreover, those experiments have shown that the ECG signal 
processing and the classification can be performed in real-time 
on the PDA by using a processing cycle duration of 2 seconds, 
that is, if it is performed every 2 seconds. In that case, the 
rhythm detection delay would be of 6.66 seconds.  

As future work, we plan to incorporate this PDA into a real-
time monitoring system that acquires and analyzes ECG of 
people that may be moving, and sends alarms to a hospital 
center when high-risk arrhythmias are found. 
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