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Abstract—Many real-world applications require ontology
alignment to integrate semantic information from different
sources. However, most of the work in the field is restricted
to finding synonymy relationships, and hyponymy relationships
have not received similar attention. In this paper, we discuss some
extensions of our previous work in the discovery of subsumption
relationships with fuzzy clustering, aggregation operators, For-
mal Concept Analysis, and synonymy relationships.

I. INTRODUCTION

In recent years, ontologies have become a standard for
knowledge representation. An ontology is an explicit and
formal specification of the concepts, individuals, and relation-
ships that exist in some area of interest, created by defining
axioms that describe the properties of these entities [1]. They
have been successfully used as part of expert and multiagent
systems, as well as a core element in the Semantic Web.
Ontologies allow adding semantics to data, making knowledge
maintenance, information integration, and reuse of components
easier. However, there are still unsolved interoperability prob-
lems when dealing with terms taken from different ontologies
as we do not usually know how they relate to each other.

In this context, ontology alignment consists in finding
semantic relationships between elements belonging to different
ontologies [2]. For example, it is common to look for syn-
onymy, hyponymy, or disjointness relations between a concept
from a source ontology and a concept from a target ontology.
Using the resulting alignments, the integration of different
ontologies becomes easier, partially solving the above men-
tioned interoperability problems. Ontology alignment is widely
recognized as a very important problem for data integration
from different sources, and we find it particularly interesting
in semantic mobile distributed systems. For example, semantic
apps using semantic reasoners on mobile devices [3] typically
need to integrate the user context (usually represented using
an ontology) with more general domain ontologies or, in
multiagent scenarios, with ontological knowledge from other
users that co-operate with him to solve complex tasks.

Although there has been a considerable amount of work
in the field of ontology alignment, most of the approaches
restrict restrict themselves to the problem of finding synonymy
relationships (i.e., finding pairs of concepts from different
ontologies such that are semantically equivalent). We are
however more interested in the less studied problem of finding
hyponymy relationships (i.e., finding pairs of concepts from
different ontologies such that one of them is a strict subclass

of the other one). For example, the Ontology Alignment
Evaluation Initiative (OAEI)1 organizes on an annual basis a
benchmark of ontology alignment systems, mainly focusing on
synonymy relationships, but only two of these editions (20092

and 20113 ) included an “oriented matching” track dedicated to
hyponymy relationships. Synonymy is a very strict relationship
that implies that the two aligned entities have exactly the same
meaning: two equivalent concepts must have exactly the same
instances. On the contrary, in real world domains it is more
common to find terms that are quite similar but not exactly
the same, as it happens with hyponymy, where two related
concepts share some instances but not all of them.

In the Distributed Information Systems research group of
the University of Zaragoza4, we have some previous work
in the area. More precisely, some members of our group
presented an approach for the extraction of subsumption
relationships among concepts from different ontologies [4].
The objective of this paper is to continue this research line
by presenting some extensions of our previous work. In
particular, we will discuss how the use of fuzzy logic (more
precisely, fuzzy clustering and aggregation operators) brings
many benefits at different steps of the approach. Furthermore,
we will discuss the use of Formal Concept Analysis and
synonymy relationships, as well as some repeatability issues.

The rest of this paper is organized as follows. Firstly,
Section II recalls how the previous approach in [4] works.
Then, we discuss two different generalizations to the fuzzy
case: by using fuzzy clustering (Section III) and by using fuzzy
aggregation operators (Section IV). Section V describes other
extensions and contributions not related to fuzzy logic. Finally,
Section VI overviews some related work and Section VII sets
out some conclusions and ideas for future work.

II. BACKGROUND

This section quickly overviews the previous work in [4];
the interested reader is referred there for details and formulae.
That work computes subsumption relationships of the form
s v S where one of them is a concept from a source ontology
and the other one is a concept from a target ontology. The
approach includes the following steps to discover subsumption
relationships (as illustrated in Figure 1):

1http://oaei.ontologymatching.org
2http://oaei.ontologymatching.org/2009/oriented
3http://oaei.ontologymatching.org/2011/oriented
4http://sid.cps.unizar.es



Fig. 1. Architecture to extract subsumption relationships from two ontologies.

• Extraction of the set of shared roles RC for each concept
C (those having C as implicit/explicit domain/range). An
ontology reasoner is used to discover implicit knowledge.

• Subsumption relationships extraction using the concept
ontological context (labels, role set analysis, potential co-
hyponym, . . . ) to compute the subsumption degrees.

• Subsumption relationships filtering using a dynamic
threshold to discard the less probable relationships.

The second step is the most complicated one. The subsump-
tion degree between two concepts s, S from a source and a
target ontology is computed as:

wl · sd(ls, lS) + wr · sd(Rs, RS) + wch · sd(Rs, hypoS) (1)

where sd(ls, lS), sd(Rs, RS), and sd(Rs, hypoS) denote the
subsumption degrees between their labels, roles, and co-
hyponyms (respectively), and wl, wr, wch ∈ [0, 1] are weights
such that wl + wr + wch = 1. One of the problems
of the approach is the high number of parameters to be
tuned (sd functions also depend on some inner parameters).
The subsumption degree between concept labels is computed
combining information about their relationships from third-
party lexical databases and their similarity string metric. The
subsumption degree between roles is based on intuitive ideas
such as the duck test (“if it looks like a duck, swims like a
duck, and quacks like a duck, then it probably is a duck”),
which implies for example that the subsumption degree is
proportional to the percentage of roles of S that s has, and
to the number of shared roles, or the opposite duck test (“if
it does not look like a duck, does not swim like a duck, and
does not quack like a duck, then it probably is not a duck”),
which implies for example that if no roles are shared, the

Fig. 2. Clusters obtained in the case 101–222: each subsumption degree is
colored as very probable (blue), doubtful (green) or clearly unrelated (red).

subsumption degree is inversely proportional to the number
of roles of S. Finally, the subsumption degree between co-
hyponyms is based on the idea that if a concept C shares
roles with a concept s which is known to be a hyponym of S,
then it is more likely to be a hyponym of S as well.

III. EXTENSION WITH FUZZY CLUSTERING

One of the most interesting features of the previous ap-
proach to discover subsumption relationships in [4] is the
possibility of select dynamic thresholds, that is, given a set of
computed alignments between two ontologies, the approach
is able to automatically choose a threshold so that only the
best alignments (those with a degree greater or equal than the
threshold) are actually kept. Indeed, practice shows that it is
important to associate different thresholds depending to the
different input ontologies: a suitable threshold for a pair of
ontologies might be too high or too low for another couple.

It is also evident that for practical reasons to automate this
process as far as possible is very important. On the one hand,
it is difficult for a human to decide which is the best threshold;
on the other hand, even for an expert, this is not a feasible
option if a lot of thresholds need to be computed, as it happens
during the evaluation of an alignment software, or in ontology
mapping competitions.

In [4] the authors group all the data (subsumption degrees
between pairs of concepts) into 3 clusters (very probable,
doubtful, and clearly unrelated degrees), using k-means. Then,
the minimum datum of the cluster with a higher centroid is
chosen as a threshold to filter the results. The implementation
uses the Java Machine Learning Library (Java-ML)5.

Rather than using a crisp clustering algorithm, we propose
to use a fuzzy c-means algorithm [5]. The fuzzy c-means
algorithm groups a set of n data xj into c clusters described
by means of their centroids ci (see Figure 2 for an example).
Then, the higher centroid can be selected as a threshold.

The main difference in fuzzy c-means algorithm is that
every datum can belong to several clusters with different
degrees of membership. To this end, the algorithm considers
a matrix of membership degrees: µij denotes the membership
degree of the datum xj to the i-th cluster. More precisely, the
steps of the algorithm are the following ones:

5http://java-ml.sourceforge.net



1) Initialize the matrix of membership degrees by assigning
to each µij a random number in [0, 1].

2) Compute the c centroids: ci = (
∑n
j=1 µ

m
ijxj)/

∑n
j=1 µ

m
ij

3) Update the matrix of membership degrees as follows:

µij =
( c∑
k=1

‖xj − ci‖2/(m−1)

‖xj − ck‖2/(m−1)

)−1

4) If the stop condition does not hold, go to step 2.
Initially, we tried to use an existing implementation, the

library Jminhep6. However, we obtained very often unexpected
results such as negative values. Since there is not enough
support or documentation, we used our own implementation
of the algorithm with the following parameters:

• Fuzziness: m = 2.
• Stop condition: 1 iteration without changes in centroids.
• Precision for the centroid similarity: 0.0001.

Using fuzzy c-means in our case brings several advantages.
Firstly, it is well-known that fuzzy c-means is usually more

stable to the random choice of the initial centroids, and we
have verified that this also happens in our case. Indeed, the
implementation used in [4] computes 15 repetitions of the k-
means algorithm and returns the maximum of the thresholds
obtained in each repetition. By using fuzzy c-means we can
significantly reduce the number of repetitions: the differences
are so small that a single execution is enough. Table I shows
the results of some experiments involving the OAEI 2009
oriented track benchmark, providing reference alignments (or
official results) between a source ontology 101 and several
target ones. In particular, we show maximal value, minimal
value, maximal difference, and standard deviation for the
thresholds obtained in the fuzzy and the crisp case. In fact,
the average maximal difference between different executions
of the crisp clustering algorithm is 0.14 (but can reach 0.257
in some cases, for ontologies 101 and 201), whereas in the
fuzzy algorithm it is 0.005. To illustrate the importance of
such differences, let us consider the case of 101 and 302,
where the maximal difference is similar to the average value
(0.125). The minimal threshold produces 58 candidates to be
subsumption degrees, later filtered to 12, whereas the maximal
threshold produces 288, later filtered to 20.

Secondly, since fuzzy clustering does not require to repeat
multiple executions, it reduces the global running time.

Thirdly, [4] assumes that there will always be some good
alignments. If the two compared ontologies are completely
unrelated, so there should be no alignments at all, the approach
would return the “least bad” thresholds. By using fuzzy c-
means, we know the membership degrees of each datum to all
the clusters, so we can detect these situations: if the distance
between two centroids is very small, a degree can be classified
as a very probable relationship or as a doubtful one, so we
can assume that this is one of those cases where there are
no good thresholds. For example, in the completely unrelated
ontologies 101 and 102 the smallest difference between two

6http://jwork.org/jminhep

TABLE I
THRESHOLDS OBTAINED USING CLASSICAL AND FUZZY C-MEANS.

Fuzzy clustering Classic clustering
Ontologies Max Min Dif σ Max Min Dif σ
101–102 0.113 0.113 0 0 0.130 0.113 0.017 0.008
101–103 0.330 0.330 0 0 0.501 0.330 0.171 0.083
101–104 0.325 0.325 0 0 0.492 0.325 0.167 0.043
101–201 0.334 0.334 0 0 0.591 0.334 0.257 0.118
101–202 0.149 0.149 0 0 0.215 0.130 0.085 0.039
101–203 0.335 0.335 0 0 0.511 0.335 0.176 0.062
101–204 0.334 0.334 0 0 0.508 0.334 0.174 0.080
101–205 0.334 0.334 0 0 0.495 0.334 0.161 0.067
101–206 0.326 0.326 0 0 0.496 0.334 0.161 0.057
101–207 0.326 0.326 0 0 0.496 0.334 0.161 0.082
101–208 0.304 0.304 0 0 0.455 0.306 0.149 0.073
101–209 0.201 0.201 0 0 0.201 0.130 0.071 0.029
101–210 0.197 0.197 0 0 0.267 0.197 0.069 0.024
101–222 0.334 0.334 0 0 0.503 0.334 0.169 0.086
101–223 0.326 0.326 0 0 0.478 0.329 0.150 0.068
101–224 0.334 0.334 0 0 0.501 0.334 0.167 0.069
101–225 0.334 0.334 0 0 0.501 0.334 0.167 0.063
101–230 0.309 0.308 0 0 0.424 0.270 0.154 0.071
101–231 0.334 0.334 0 0 0.501 0.334 0.167 0.085
101–237 0.334 0.334 0 0 0.507 0.507 0 0
101–238 0.328 0.328 0 0 0.215 0.328 0.150 0.038
101–249 0.149 0.149 0 0 0.206 0.149 0.066 0.017
101–251 0.149 0.149 0 0 0.206 0.129 0.076 0.029
101–252 0.149 0.149 0 0 0.206 0.149 0.057 0.024
101–258 0.149 0.149 0 0 0.206 0.129 0.076 0.027
101–259 0.146 0.146 0 0 0.206 0.168 0.038 0.010
101–301 0.330 0.220 0.110 0.045 0.330 0.186 0.144 0.070
101–302 0.176 0.176 0 0 0.240 0.115 0.125 0.049
101–303 0.107 0.065 0.043 0.019 0.113 0.113 0 0
101–304 0.138 0.138 0 0 0.218 0.148 0.070 0.018

centroids is only 0.006 (compare it with the alignment of 101
and 222, where the smallest difference is 0.16).

Fourthly, fuzzy c-means can produce a more accurate
threshold in terms of precision, recall, and F-measure. In
our case, these values were computed as follows (where
retrievedAlignments and relevantAlignments denote sets
of hyponymy relationships retrieved by our system or in the
OAEI 2009 oriented track reference alignments, respectively):

precision =
| relevantAlignments ∩ retrievedAlignments |

| retrievedAlignments |

recall =
| relevantAlignments ∩ retrievedAlignments |

| relevantAlignments |
F = (2 · precision · recall)/(precision + recall)

Table II shows the detailed results, where the color green
indicates that fuzzy clustering outperforms crisp clustering sig-
nificantly (a bigger difference than 0.5), red means that crisp
clustering outperforms fuzzy clustering, and black denotes a
tie. Recall increased in 24 % of the cases; in the rest, there
are no important differences.

Unfortunately, precision and F-measure can actually de-
crease, although this did not happen in 70 % and 73 %
of the cases, respectively. We think that the reason of this
decrease can be that the subsumption degrees that are currently
computed are not precise enough; future work will include a
deeper study of this behavior. As a final note, fuzzy clustering
can produce either higher or lower thresholds, and thus more
or less candidates to be subsumption relationships, but in our
experiments it always produced more alignments.



TABLE II
PRECISION, RECALL, AND F-MEASURE OF BOTH CLUSTERINGS.

Fuzzy clustering Classic clustering
Ontologies Precision Recall F-measure Precision Recall F-measure

101-102 1 1 1 0 1 0
101-103 0.28 0.2 0.23 0.28 0.1 0.15
101-104 0.28 0.2 0.23 0.28 0.1 0.15
101-201 0.15 0.12 0.13 0.2 0.12 0.15
101-202 0 0 0 0 0 0
101-203 0 0 0 0.33 0.04 0.07
101-204 0 0 0 0.33 0.04 0.07
101-205 0.17 0.12 0.14 0.26 0.16 0.2
101-206 1 1 1 0 1 0
101-207 0.32 0.2 0.25 0.24 0.08 0.12
101-208 0 0 0 0.33 0.04 0.07
101-209 0.17 0.14 0.15 0.17 0.14 0.15
101-210 0.34 0.2 0.25 0.22 0.08 0.12
101-222 0.33 0.5 0.39 0.67 0.47 0.55
101-223 0.25 0.26 0.26 0.13 0.07 0.09
101-224 0.23 0.16 0.19 0.24 0.08 0.12
101-225 0 0 0 0.33 0.04 0.07
101-230 0.33 0.2 0.25 0.28 0.11 0.16
101-231 0 0 0 0.33 0.04 0.07
101-237 0.31 0.47 0.37 0.67 0.47 0.55
101-238 0.25 0.26 0.26 0.13 0.07 0.09
101-249 0 0 0 0 0 0
101-251 0 0 0 0 0 0
101-252 0.04 0.03 0.03 0 0 0
101-258 0 0 0 0 0 0
101-259 0.02 0.03 0.03 0 0 0
101-301 0.12 0.2 0.15 0.12 0.2 0.15
101-302 0.4 0.26 0.31 0.58 0.23 0.33
101-303 0.02 0.1 0.04 0.02 0.1 0.04
101-304 0.02 0.04 0.03 0.05 0.07 0.06

IV. EXTENSION WITH FUZZY AGGREGATION OPERATORS

The subsumption degree is computed by combining
sd(ls, lS), sd(Rs, RS), and sd(Rs, hypoS). As shown in
Equation 1, so far it is computed as a weighted sum. In this
section, we will discuss alternative ways to do that.

Aggregation Operators (AOs) are mathematical functions
that are used to combine different pieces of information [6].
Usually, given a domain D (for us, D = [0, 1]), an AO of
dimension n is a mapping @ : Dn → D. Thus, an AO
aggregates the values of n different criteria. Some examples of
AOs are maximum, minimum, order statistic, arithmetic mean,
weighted sum (or weighted mean), and median.

An important class of AOs are the Ordered Weighted
Averaging (OWA) operators [7], a parameterized class of mean
type AOs. Each OWA operator is parameterized with a vector
of n weights W = [w1, . . . , wn] such that wi ∈ [0, 1] and∑n
i=1 wi = 1. Formally, an OWA operator of dimension

n is an AO such that @owa
W (x1, . . . , xn) =

∑n
i=1 wixσ(i),

where σ is a permutation of the values xi such that xσ(1) ≥
xσ(2) ≥ · · · ≥ xσ(n), i.e., xσ(i) is the i-th largest of the values
x1, . . . , xn. This reordering step is a fundamental aspect of
these operators: a weight wi is not associated with a specific
argument but with an ordered position of the aggregate. As a
result, the OWA operator is non-linear. By choosing different
weights, OWA operators can implement different AOs, such
as arithmetic mean, k-th maximum, k-th minimum, median or
order statistic, among others. However, it is worth to stress
that weighted sum cannot be represented as an OWA operator.

To compute the subsumption degree, we argue that in
some application domains, OWA can be more appropriate

than a weighted sum because each of the weights is not
directly associated to any of the aggregated values sd(ls, lS),
sd(Rs, RS), and sd(Rs, hypoS). For example, a vector of
the form W = [0.7, 0.2, 0.1] gives more importance to the
highest of the values, so it is an optimistic computation
of the subsumption degree. On the contrary, in the vector
[0.1, 0.2, 0.7] the lowest value has a greater contribution to
the subsumption degree, so it is a more conservative decision.

To illustrate the usefulness of OWA, assume that we are
aligning two ontologies written in different languages such as
101, in English, and 206, in French.7 In several cases the simi-
larity string metric will produce low values (terms in different
values are expected to have different names, as it happens
with the English 101:Book and the French 206:Livre), but
in such case the lexical similarity is not significant, so we
might not want to have it a high importance. However, if
two terms happen to have a high lexical similarity despite
of being expressed in different languages (for example, they
both can have a Greek or Latin root, as in happens with the
English 101:Monograph and the French 206:Monographie),
then similarity is more significant. Thus, the importance is not
always associated only to the attribute but also to its value.

One might consider instead a t-norm (a commutative, asso-
ciative, and monotonic function ⊗ : [0, 1]→ [0, 1] with neutral
element 1) or a t-conorm (a commutative, associative, and
monotonic function ⊕ : [0, 1] → [0, 1] with neutral element
0) [8]. The largest t-norm (the minimum) and the smallest
t-conorm (maximum) correspond to the two extreme cases
of OWA operators: min(x1, . . . , xn) ≤ @(x1, . . . , xn) ≤
max(x1, . . . , xn). The particular choice of the t-norm or t-
conorm will depend on the application domain.

V. OTHER EXTENSIONS AND CONSIDERATIONS

A. Use of Formal Concept Analysis

It is worth mentioning some similarities and differences be-
tween our approach and Formal Concept Analysis (FCA) [9].
FCA tries to build a concept hierarchy or formal ontology
(we will call it FCA ontology) from a collection of objects (or
individuals) and the values of their properties. The intuitive
idea is that if several objects share the same property values,
there should be a general concept to which they belong. A
class in the concept hierarchy corresponds to a set of objects
sharing the same values for a set of properties, and each of its
subclasses represent a subset of their objects, that is, objects
sharing the same values for a subset of the properties.

In our case, the collection of objects are the ontology
concepts from the ontologies to be aligned and their properties
are the ontology roles. Rather than focusing on the precise
values of the properties, we consider the existence of the
attribute, i.e., if the classes have a property or not (that is,
if the class is part of the domain or range of the property).

FCA is focused on the discovery of new hidden concepts
rather than using existing concepts to build relationships

7For the sake of readability, we will shorten the ontology namespaces (for
example, 101:Book denotes the concept Book from the 101 ontology).



between them as we do. Nevertheless, we can still use it in
our scenario. The fact that a concept from the source ontology
is subsumed by another one from the target ontology (or vice
versa) according to the FCA ontology is coherent with having
an alignment between them. Thus, we can use FCA in two
different ways: a priori, as an initial step providing candidates
for the alignments, or a posteriori, as a final step modifying
the confidence of the computed alignments.

It should be noted that the candidates produced by the
a priori way are not complete (because of the incomplete
information in real-world ontologies) nor necessarily correct
(because having more attributes is a not a sufficient condition).

For example, the concept 222:Deliverable is a subclass of
101:Deliverable. 101:Deliverable has 51 properties (it is the
domain of 48 properties and the range of 3), and 222:De-
liverable specializes it with 4 additional attributes (it is the
domain of 222:chapter, 222:isPartOf, and 222:pages, and
the range of 222:parts). Therefore, FCA identifies 222:Deliv-
erable as more specific than 101:Deliverable, which supports
the hypothesis of the subsumption relationship. However, we
found many examples where the incomplete information in the
aligned ontologies produces that the general concept has more
properties than the subsumed one, so FCA would not produce
this pair as a candidate. This is the case, e.g., of 222:Report
with more properties than its subclass 101:TechReport.

This example assumed that two roles are the same if the
have the same label. However, our approach improves this idea
by considering a synonymy degree between the properties.

B. Use of Synonymy Relationships

It is very important to take into account the extensive work
in discovery of synonymy relationships. A first possibility is
to compute both a hyponymy degree (using our approach)
and a synonymy degree (using any of the approaches in
the literature), and to use the maximum of them to decide
if two terms are synonyms or hyponyms (or none of them
if both degrees are too low). However, it is important to
ensure that both degrees are comparable, which requires some
experiments to set the parameters and weights of both degrees
so they are coherent with each other.

The use of lexical similarity in the discovery of hyponymy
relationships is different from its use to find synonyms. The
fact that two candidate terms have a similar name strongly
supports that they are synonyms (even if it is not neither a
sufficient or necessary condition). However, when looking for
hyponyms the situation is different: two terms with a very
similar name are less likely to be hyponyms than synonyms.
However, two terms where the name of one of them is a
substring of the name of the other one, are typically likely
to be hyponyms: the longest name could be specializing the
term and hence could be a hyponym.

C. Repeatability of the Evaluations

Now we will discuss some issues that are important to guar-
antee the repeatability of the evaluation results. Although using
external third-party services or databases can be beneficial, it is

important to make sure that the experiments are repeatable. For
example, while Wordnet [10] offers a good control of versions
and can be safely used, this is not always the case for other
services. In fact, the availability of the external services can
be severely compromised for limitations in its use, such as
limited number of web searches, API restrictions, etc.

Besides, to compute precision and recall easily, it is desir-
able that the reference alignments do not include redundancies.
This happens, e.g., in the OAEI oriented track 2009, where
the fact that the concept 101:Collection is a subclass of the
concept 304:Book appears twice. Special care is also needed
to avoid counting correct subsumptions (e.g., 101:List is a
subclass of rdf:List) but not included in the reference align-
ments due to the fact that they involve elements using different
prefixes than the source and target ontologies. If we use a
semantic reasoner to navigate through a concept hierarchy, we
can get axioms about elements from the imported ontologies,
with prefixes such as rdf, rdfs, foaf, etc.

VI. RELATED WORK

This section recaps some related work on the discovery of
subsumption relationships in ontologies and the use of fuzzy
logic or Formal Concept Analysis in ontology alignment.

A. Discovery of Subsumption Relationships

Most of the work in ontology alignment is focused on
the discovery of synonymy relationships, and only a few
works consider the discovery of subsumption relationships.
Some of these previous works are based on the extraction of
subsumption relationships on shared instances (such as [11]
or [12]), whereas [4] deals with the extraction of hyponymy
relationships at the schema level. Previous approaches ex-
tracting relationships at the schema level include the systems
MOMIS [13], SCARLET [14], and Classification-based learn-
ing of Subsumption Relations (CSR) [15]. The alignments that
MOMIS and SCARLET can find must already exist in third-
party sources (Wordnet and other ontologies, respectively); [4]
also exploits some external sources (such as Wordnet) but it
can discover new relationships. Contrary to [4], CSR uses
machine learning techniques so it requires a previous training
step. The authors of CSR recognize that not all the ontologies
are suitable for the training step.

B. Fuzzy Logic and Ontology Alignment

Whereas our approach use standard (crisp) ontologies, most
of the previous work using fuzzy logic in ontology alignmen-
t/mapping considers fuzzy ontologies [16], [17], [18], [19],
[20], [21]. Fuzzy ontologies have a different semantics [22],
where concepts and properties are interpreted as fuzzy sets and
fuzzy relations, respectively. While in our case the subsump-
tion degree indicates the confidence of the system in the exis-
tence of such a relationship, in fuzzy ontologies it expresses
to which extent the membership to the subsumed concept
implies the membership to the superclass. Some exceptions
considering crisp ontologies are [23], using fuzzy conceptual
graphs to infer relantionships between instances, and [24],



using fuzzy similarities to infer synonymy relationships, but
we instead aim at discovering subsumptions between concepts.

C. Formal Concept Analysis and Ontology Alignment

While there are also some previous approaches using FCA
in ontology alignment/mapping/merging [21], [25], [26], [27],
none of them use FCA a posteriori as we suggested. Moreover,
most of them do not combine FCA with other techniques such
as label analysis or co-hyponym analysis as we do. There is
an exception but it does not consider dynamic thresholds or
fuzzy logic [28]. Furthermore, some of these works focus on
the discovery of synonymy relationships rather than hyponymy
relationships; in our opinion, since FCA produces a concept
hierarchy of subsumption relationships, it actually seems much
more natural to use it to build hyponymy relationships.

VII. CONCLUSIONS AND FUTURE WORK

This paper has shown that using fuzzy logic makes it
possible to improve a previous system for the automatic
discovery of subsumption relationships between elements of
classical ontologies. In particular, the use of fuzzy clustering
is more stable, faster, and makes it easier the detection of
cases where there are no subsumptions. Moreover, fuzzy
aggregation operators offer a wide range of possibilities to
combine the different measures used in our system. We have
also discussed how to integrate existing reasearch on Formal
concept Analysis and the discovery of synonym relationships.

Future work will include a revision of the parameters
involved in the subsumption degrees (as they do not seem
precise enough), an evaluation of the presented ideas that were
not evaluated empirically (such as the use of OWA or FCA),
and a study of the scalability for pairs of large ontologies.
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